Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There is evidence that the development of atherosclerosis (AS) involves the dysregulation of circular RNAs. This study aimed to investigate the role of circular ubiquitin-specific peptidase 9 X-linked (circUSP9X) in AS cell models. Human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL) were used as cell models of AS. The expression of circUSP9X, miR-148b-3p, and Kruppel-like factor 5 (KLF5) messenger RNA was measured using quantitative polymerase chain reaction. Cell viability was assessed by Cell Counting Kit-8 assay. Lactate dehydrogenase leakage, malonaldehyde content, and superoxide dismutase activity were investigated using matched commercial kits. Cell apoptosis was detected using flow cytometry assay. The protein levels of apoptosis-related markers and KLF5 were detected by western blot. The release of proinflammatory factors was monitored by enzyme-linked immunosorbent assay. The predicted relationship between miR-148b-3p and circUSP9X or KLF5 was confirmed by dual-luciferase reporter assay or RNA immunoprecipitation assay. CircUSP9X was highly expressed in ox-LDL-treated HUVECs. CircUSP9X knockdown inhibited ox-LDL-induced lactate dehydrogenase leakage, apoptosis, inflammation, and oxidative stress in HUVECs. CircUSP9X directly bound to miR-148b-3p, and KLF5 was a target of miR-148b-3p. CircUSP9X could regulate KLF5 expression by competitively targeting miR-148b-3p. Rescue experiments indicated that circUSP9X knockdown inhibited ox-LDL-induced HUVEC injuries by enriching miR-148b-3p, and miR-148b-3p restoration alleviated ox-LDL-induced HUVEC injuries by degrading KLF5. In conclusion, circUSP9X knockdown relieved ox-LDL-triggered HUVEC injuries during AS progression partly by mediating the miR-148b-3p/KLF5 network.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0000000000001127DOI Listing

Publication Analysis

Top Keywords

circusp9x knockdown
12
huvec injuries
12
circusp9x
9
circular ubiquitin-specific
8
ubiquitin-specific peptidase
8
peptidase x-linked
8
oxidized low-density
8
human umbilical
8
umbilical vein
8
vein endothelial
8

Similar Publications

Objectives: This study aims to elucidate the role of circUSP9X (Circular RNA Ubiquitin Specific Peptidase 9 X-Linked) in the development of venous thrombosis in the lower extremities.

Methods: An animal model of Deep Vein Thrombosis (DVT) and a hypoxic model of Human Umbilical Vein Endothelial Cells (HUVECs) treated with Cobalt (II) Chloride (CoCl) were developed. The expression levels of circUSP9X, microRNA-148b-3p (miR-148b-3p), and SRC Kinase Signaling Inhibitor 1 (SRCIN1) were quantified using quantitative reverse transcription Polymerase Chain Reaction and Western blot analysis.

View Article and Find Full Text PDF

Endothelial pyroptosis is a pathological mechanism of atherosclerosis (AS). Circular RNAs (circRNAs) are vital in AS progression by regulating endothelial cell functions. The study aimed to explore whether circ-USP9× regulated pyroptosis of endothelial cell to involve in AS development and the molecular mechanism.

View Article and Find Full Text PDF

There is evidence that the development of atherosclerosis (AS) involves the dysregulation of circular RNAs. This study aimed to investigate the role of circular ubiquitin-specific peptidase 9 X-linked (circUSP9X) in AS cell models. Human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL) were used as cell models of AS.

View Article and Find Full Text PDF