98%
921
2 minutes
20
Fish eDNA metabarcoding is usually performed from filtered water samples. The volume of filtered water depends on the study scope and can rapidly become time consuming according to the number of samples that have to be processed. To avoid time allocated to filtration, passive DNA samplers have been used to recover fish eDNA from marine environments faster. In freshwater ecosystems, aquatic biofilms were used to catch eDNA from macroinvertebrates. Here, we test the capacity of aquatic biofilms to entrap fish eDNA in a large lake and, therefore, the possibility to perform fish eDNA metabarcoding from this matrix compared to the traditional fish eDNA approach from filtered water samples. Methodological aspects of the use of aquatic biofilms for fish eDNA metabarcoding (e.g. PCR replicates, biological replicates, bioinformatics pipeline, reference database and taxonomic assignment) were validated against a mock community. When using biofilms from habitats sheltered from wind and waves, biofilm and water approach provided similar inventories. Richness and diversity were comparable between both approaches. Approaches differed only for rare taxa. Our results illustrate the capacity of aquatic biofilms to act as passive eDNA samplers of fish eDNA and, therefore, the possibility to use biofilms to monitor fish communities efficiently from biofilms. Furthermore, our results open up avenues of research to study a diversity of biological groups (among which bioindicators as diatoms, macroinvertebrates and fish) from eDNA isolated from a single environmental matrix reducing sampling efforts, analysis time and costs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.13568 | DOI Listing |
Curr Biol
July 2025
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China. Electronic address: jinxianliu@gmail
Determination of evolutionary mechanisms underlying innovative traits is crucial for understanding the vast diversity of species and phenotypes. Given their respiratory physiologies, fishes are compelling subjects for evolutionary analysis of the hemoprotein-based oxygen-transport systems. Asian noodlefishes (Osmeriformes: Salangidae) and Antarctic icefishes (Notothenioidei: Channichthyidae) are examples of fish clades that generally do not express myoglobin or hemoglobin.
View Article and Find Full Text PDFACS Omega
September 2025
Genetics and Cellular Biology Laboratory, Center for Biodiversity Studies, Federal University of Pará, Belém 66075-110, Pará, Brazil.
Histone genes contain sequences responsible for coding five types of proteins (H1, H2A, H2B, H3, and H4) that are of great importance for chromatin organization. Their transcriptional regulation through DNA methylation has been little studied. Testudines are ancient reptiles with high cytogenetic diversity (2 = 26-68), with a large number of histone gene loci in their karyotype.
View Article and Find Full Text PDFEcol Evol
September 2025
Aquatic Systems Biology Unit TUM School of Life Sciences, Technical University of Munich Freising Germany.
Historically, the thick-shelled river mussel ( agg. complex) was considered a single, widespread species across Europe. However, recent phylogenetic taxonomic revisions have delineated 12 species from this complex, including (s.
View Article and Find Full Text PDFFish Physiol Biochem
September 2025
Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
Epigenetics has a profound impact on fish nutrition and aquaculture by regulating gene expression, physiological traits, and growth without altering the underlying DNA sequence. The changes, particularly DNA methylation, can be passed down through generations, enhancing productivity and disease resistance. External factors like temperature, stress, nutrition and illness exposure can also influence epigenetic changes, affecting protein, omega-3 fatty acids, and probiotics.
View Article and Find Full Text PDFBiology (Basel)
August 2025
National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China.
This study aimed to determine the practical efficacy of passive eDNA samplers (PEDS) for monitoring fish diversity in riverine ecosystems. It investigated the utility of environmental DNA (eDNA) in accurately depicting fish composition and diversity within the Lancang River. Environmental DNA technology, particularly PEDS, may be used as a substitute for traditional water filtration techniques.
View Article and Find Full Text PDF