Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The synthesis of organic chemicals from HO and CO using solar energy is important for recycling CO through cyclical use of chemical ingredients produced from CO or molecular energy carriers based on CO. Similar to photosynthesis in plants, the CO molecules are reduced by electrons and protons, which are extracted from HO molecules, to produce O. This reaction is uphill; therefore, the solar energy is stored as the chemical bonding energy in the organic molecules. This artificial photosynthetic technology mimicking green vegetation should be implemented as a self-standing system for on-site direct solar energy storage that supports CO recycling in a circular economy. Herein, we explain our interdisciplinary fusion methodology to develop hybrid photocatalysts and photoelectrodes for an artificial photosynthetic system for the CO reduction reaction (CORR) in aqueous solutions. The key factor for the system is the integration of uniquely different functions of molecular transition-metal complexes and solid semiconductors. A metal complex catalyst and a semiconductor appropriate for a CORR and visible-light absorption, respectively, are linked, and they function complementary way to catalyze CORR under visible-light irradiation as a particulate photocatalyst dispersion in solution. It has also been proven that Ru complexes with bipyridine ligands can catalyze a CORR as photocathodes when they are linked with various semiconductor surfaces, such as those of doped tantalum oxides, doped iron oxides, indium phosphides, copper-based sulfides, selenides, silicon, and others. These photocathodes can produce formate and carbon monoxide using electrons and protons extracted from water through potential-matched connections with photoanodes such as TiO or SrTiO for oxygen evolution reactions (OERs). Benefiting from the very low overpotential of an aqueous CORR at metal complexes approaching the theoretical lower limit, the semiconductor/molecule hybrid system demonstrates a single tablet-formed monolithic electrode called "artificial leaf." This single electrode device can generate formate (HCOO) from HO and CO in a water-filled single-compartment reactor without requiring a separation membrane under unassisted or bias-free conditions, either electrically or chemically. The reaction proceeds with a stoichiometric electron/hole ratio and stores solar energy with a solar-to-chemical energy conversion efficiency of 4.6%, which exceeds that of plants. In this Account, the key results that marked our milestones in technological progress of the semiconductor/molecule hybrid photosystem are concisely explained. These results include design, proof of the principle, and understanding of the phenomena by time-resolved spectroscopies, synchrotron radiation analyses, and DFT calculations. These results enable us to address challenges toward further scientific progress and the social implementation, including the use of earth-abundant elements and the scale-up of the solar-driven CORR system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.1c00564DOI Listing

Publication Analysis

Top Keywords

solar energy
16
semiconductor/molecule hybrid
12
hybrid photosystem
8
electrons protons
8
protons extracted
8
artificial photosynthetic
8
corr visible-light
8
catalyze corr
8
energy
7
corr
6

Similar Publications

Perylenediimide-Based Donor-Acceptor MOF for Sunlight-Driven Photocatalytic -α-C(sp)-H Bond Functionalization of Tetrahydroisoquinoline.

Inorg Chem

September 2025

Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemical and Materials Engineering, Qujing Normal University, Qujing 655011, China.

Sequential assembly of donor-acceptor components at the molecular level within a MOF is an effective strategy to achieve efficient electron-hole separation for enhancing the activity of photocatalysts. Meanwhile, the highly efficient and selective functionalization of tetrahydroisoquinoline (THIQ) under mild conditions remains an urgent demand in both the scientific and industrial communities. This work reports a donor-acceptor MOF photocatalyst () constructed by the coordinated assembly of donor and acceptor components, in which a naphthalene unit serves as an electron donor and a perylenediimide unit as an electron acceptor.

View Article and Find Full Text PDF

Unveiling additive effects on molecular packing and charge transfer in organic solar cells: an AIMD and DFT study.

Phys Chem Chem Phys

September 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China.

Additive assisted strategies play a crucial role in optimizing the morphology and improving the performance of organic solar cells (OSCs), yet the molecular-level mechanisms remain unclear. Here, we employ molecular dynamics (AIMD) and density functional theory (DFT) to elucidate the influence of typical additives of 1,8-diiodooctane (DIO) and 3,5-dichlorobromobenzene (DCBB) on molecular packing, electronic structures, and charge transport. It can be observed that both additives can enhance the stacking properties of the donor and acceptor materials, yet they have different effects on the local electrostatic environment.

View Article and Find Full Text PDF

The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.

View Article and Find Full Text PDF

Droplets Self-Draining on the Horizontal Slippery Surface for Real-Time Anti-/De-Icing.

Nanomicro Lett

September 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.

Undesired ice accumulation on infrastructure and transportation systems leads to catastrophic events and significant economic losses. Although various anti-icing surfaces with photothermal effects can initially prevent icing, any thawy droplets remaining on the horizontal surface can quickly re-freezing once the light diminishes. To address these challenges, we have developed a self-draining slippery surface (SDSS) that enables the thawy droplets to self-remove on the horizontal surface, thereby facilitating real-time anti-icing with the aid of sunlight (100 mW cm).

View Article and Find Full Text PDF

Differentiating the 2D Passivation from Amorphous Passivation in Perovskite Solar Cells.

Nanomicro Lett

September 2025

College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Pingshan, 518118, Shenzhen, People's Republic of China.

The introduction of two-dimensional (2D) perovskite layers on top of three-dimensional (3D) perovskite films enhances the performance and stability of perovskite solar cells (PSCs). However, the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results. In this study, we compared two fluorinated salts: 4-(trifluoromethyl) benzamidine hydrochloride (4TF-BA·HCl) and 4-fluorobenzamidine hydrochloride (4F-BA·HCl) to engineer the 3D/2D perovskite films.

View Article and Find Full Text PDF