Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Previously, we presented our preliminary results (N = 14) investigating the effects of short-wavelength light from a smartphone during the evening on sleep and circadian rhythms (Höhn et al., 2021). Here, we now demonstrate our full sample (N = 33 men), where polysomnography and body temperature were recorded during three experimental nights and subjects read for 90 min on a smartphone with or without a filter or from a book. Cortisol, melatonin and affectivity were assessed before and after sleep. These results confirm our earlier findings, indicating reduced slow-wave-sleep and -activity in the first night quarter after reading on the smartphone without a filter. The same was true for the cortisol-awakening-response. Although subjective sleepiness was not affected, the evening melatonin increase was attenuated in both smartphone conditions. Accordingly, the distal-proximal skin temperature gradient increased less after short-wavelength light exposure than after reading a book. Interestingly, we could unravel within this full dataset that higher positive affectivity in the evening predicted better subjective but not objective sleep quality. Our results show disruptive consequences of short-wavelength light for sleep and circadian rhythmicity with a partially attenuating effect of blue-light filters. Furthermore, affective states influence subjective sleep quality and should be considered, whenever investigating sleep and circadian rhythms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628671PMC
http://dx.doi.org/10.3390/clockssleep3040040DOI Listing

Publication Analysis

Top Keywords

short-wavelength light
16
sleep circadian
16
circadian rhythms
12
affective states
8
smartphone filter
8
sleep quality
8
sleep
7
smart bed
4
bed phone?
4
phone? impact
4

Similar Publications

The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.

View Article and Find Full Text PDF

Light serves as the main synchroniser of the circadian system. The amount of light and its spectral distribution throughout the day influence hormonal secretion and sleep-wake regulation. There is a knowledge gap regarding the impact of the spectrum and intensity reduction of short-wavelength light during the day on circadian system outputs.

View Article and Find Full Text PDF

Light-emitting diode-derived blue light overexposure accelerates corneal endothelial cell aging by inducing abnormal ROS accumulation.

J Photochem Photobiol B

September 2025

The First Affiliated Hospital, Department of Ophthalmology, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China; Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center

Blue light, defined as short-wavelength visible light ranging from 400 to 500 nm, is recognized for its high energy within the visible light spectrum. The prevalent use of light-emitting diodes (LEDs) has significantly increased exposure to blue light. Corneal endothelial cells (CECs) playing a crucial role in maintaining corneal transparency to get clear visual field.

View Article and Find Full Text PDF

The influence of macular pigment on the fine spatial resolution of light of varying wavelengths.

Exp Eye Res

September 2025

Vision Sciences Laboratory, Behavioral and Brain Sciences Program, University of Georgia, Athens, GA, USA. Electronic address:

Macular pigments (MP), composed of lutein, zeaxanthin and meso-zeaxanthin, accumulate in the human fovea and selectively absorb short-wavelength light, potentially influencing spatial vision. This study investigated the relationship between macular pigment optical density (MPOD) and fine spatial resolution across different wavelengths under conditions subject to light scatter. Sixty healthy participants (mean age = 22.

View Article and Find Full Text PDF

A key spectral tuning site of UV-sensitive vertebrate non-visual opsin Opn5.

Cell Mol Life Sci

September 2025

Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.

Opsins are photoreceptive proteins responsible for visual and non-visual photoreceptions in animals. In general, vertebrates have multiple visual and non-visual opsins whose spectral sensitivities range from the UV to the red region. Among these opsins, Opn5 has been widely identified in vertebrates from fishes to primates and functions as a non-visual opsin in various tissues, including the retina and brain.

View Article and Find Full Text PDF