Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

ULK1 kinase is the gatekeeper of canonical macroautophagy (hereafter referred to as autophagy) phosphorylating an array of substrates critical for autophagosome biogenesis. To uncover if ULK1 has broader functions also regulating subsequent steps of autophagosome turnover, i.e., maturation, lysosomal fusion, and degradation, we performed a set of unbiased phosphoproteomic experiments employing mouse and human cells in combination with genetic and environmental perturbations. We characterized more than 1,000 potential ULK1 target sites of which many affect proteins known to be involved in all phases of the autophagosome life cycle. To better understand which of these 1,000 phosphosites were directly phosphorylated by ULK1, in contrast to downstream kinases being activated or phosphatases being inhibited by ULK1, we developed a proteome-scale kinase assay and characterized 187 phosphosites on 157 proteins as ULK1 target sites. Interestingly, our results highlight an intricate crosstalk between ULK1 and protein phosphatases. Focusing on STRN (striatin), a regulatory subunit of PPP2/PP2A (protein phosphatase 2), we identified a positive feedback loop linked to ULK1 and promoting autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942521PMC
http://dx.doi.org/10.1080/15548627.2021.2002546DOI Listing

Publication Analysis

Top Keywords

ulk1
9
ulk1 protein
8
protein phosphatases
8
ulk1 target
8
target sites
8
complex interplay
4
interplay ulk1
4
phosphatases autophagy
4
autophagy regulation
4
regulation ulk1
4

Similar Publications

In oxaliplatin-resistant gastric cancer (GC), multi-omics profiling combined with organoid libraries reveals altered metabolic pathways associated with chemoresistance. We identify a novel lactylation modification at K115 of Poly(RC)-binding protein 2 (PCBP2K115la), which confers functional oxaliplatin resistance. Mechanistic studies demonstrate that the long non-coding RNA BASP1-AS1 assembles a complex containing Unc-51 Like Autophagy Activating Kinase 1 (ULK1) and lactate dehydrogenase A (LDHA), thereby activating LDHA enzymatic activity to increase lactate production.

View Article and Find Full Text PDF

Autophagy Modulation by Antidepressants: Mechanisms and Implications.

Neurochem Res

September 2025

Department of Psychiatry, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.

Depression is a significant global health concern that extends beyond mere neurotransmitter imbalances, as the significance of autophagy in cellular recycling is increasingly recognized as pivotal in its pathogenesis and therapeutic intervention. This review thoroughly integrates the insights on how various antidepressants, such as SSRIs, SNRIs, and TCAs, confer therapeutic efficacy through modulation of autophagy pathways. We present evidence indicating that these pharmacological agents can augment autophagic flux, facilitate the clearance of neurotoxic protein aggregates, mitigate neuroinflammation, and enhance mitochondrial functionality, all of which represent critical elements of depressive pathology.

View Article and Find Full Text PDF

The activation of hepatic stellate cells (HSCs), characterized by transdifferentiation from a quiescent state to a fibrogenic phenotype, is a core process of liver fibrosis. The metabolic reprogramming of HSCs plays a major role in this process to meet the high energy demands of myofibroblastic HSCs with multiple functions, such as extracellular matrix synthesis, migration, and proliferation. AMP-activated protein kinase (AMPK) is a gatekeeper of intracellular energy homeostasis, but its role in the activation of HSCs and the progression of liver fibrosis remains unclear.

View Article and Find Full Text PDF

The mycotoxin aflatoxin B1 (AFB1), frequently identified in animal feed and raw materials, induces oxidative stress as a primary toxicological consequence. The coumarin compound 4-methylesculetin (4-ME) possesses notable antioxidant properties, leading to its application in medical contexts. Given that the liver is the principal organ targeted by AFB1, this study investigated the potential mechanism through which 4-ME mitigated hepatic injury induced by AFB1 in grass carp.

View Article and Find Full Text PDF

Background: Osteoporosis (OP), an age-related skeletal disorder characterized by reduced bone mass and deteriorated microarchitecture, and non-alcoholic fatty liver disease (NAFLD), a metabolic condition primarily driven by obesity and insulin resistance (with age as a modifying factor), were investigated in this study. We aimed to elucidate the correlation between OP and NAFLD-associated lipid metabolism, and determine the therapeutic effects and molecular mechanisms of Kangshujiangu granules (KSJG) on NAFLD pathogenesis.

Methods: Clinical study: 261 patients were stratified by OP T-scores into OP and non-OP groups.

View Article and Find Full Text PDF