Synthesis and Fungicidal Activity of Hydrated Geranylated Phenols against .

Molecules

Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile.

Published: November 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is a ubiquitous fungus that affects hundreds of plants, resulting in economic losses to the horticulture and fruit industry. The search for new antifungal agents is a matter of current interest. Thus, in this work a series of geranylated phenols in which the side alkyl chain has been hydrated have been synthesized, and their activity against has been evaluated. The coupling of phenol and geraniol has been accomplished under microwave irradiation obtaining the highest reaction yields in the shortest reaction times. Hydration of the side chain was carried out in dioxane with -toluenesulfonic acid polymer-bound as the catalyst. All synthesized compounds were tested against using the growth inhibition assay and EC values were determined. The results show that activity depends on the number and nature of functional groups in the phenol ring and hydration degree of the geranyl chain. The most active compound is 1,4-dihydroquinone with one hydroxyl group attached at the end of the alkyl chain. Results from a molecular docking study suggest that hydroxyl groups in the phenol ring and alkyl chain are important in the binding of compounds to the active site, and that the experimental antifungal activity correlates with the number of H-bond that can be formed in the binding site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620067PMC
http://dx.doi.org/10.3390/molecules26226815DOI Listing

Publication Analysis

Top Keywords

alkyl chain
12
geranylated phenols
8
groups phenol
8
phenol ring
8
chain
5
synthesis fungicidal
4
activity
4
fungicidal activity
4
activity hydrated
4
hydrated geranylated
4

Similar Publications

Estimation of surface free energy and solubility parameters of solid ionic surfactants.

J Colloid Interface Sci

September 2025

Key Laboratory for Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China; National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, PR China. Electronic address:

Hypothesis: The surface free energy (γ) and solubility (δ) parameters are two important characteristic parameters describing physicochemical properties of substances, but knowledge about the characteristic parameters (γ and δ) of surfactants is still lacking. Possible relationships of the characteristic parameters of surfactants with their head group types and alkyl chain lengths as well as with the surface tension (σ) of their aqueous solutions are worth exploring.

Methods: Solid surfactants including 10 anionic and 14 cationic ones were chosen.

View Article and Find Full Text PDF

The construction of perfluoropolyether (PFPE) slippery liquid-infused porous surfaces (SLIPS) on gold coatings is one of the most effective strategies for bestowing anticoagulation and antimicrobial properties on the material. However, the poor chemical affinity between fluorinated porous precursors and gold substrates causes the agglomeration of nanostructures, resulting in uneven nanoporous morphology and accelerating lubricant leakage. Simultaneously, the weak interfacial adhesion between the nanostructures and the substrate may lead to the detachment of nanostructures under blood circulation.

View Article and Find Full Text PDF

Food contamination by per- and polyfluoroalkyl substances (PFAS), especially ultra-short-chain (USC) compounds, poses a growing concern due to their environmental persistence and potential health risks. Despite the developing regulatory framework, analytical challenges persist in quantifying polar USC-PFAS in complex content food matrices. This study presents the development and validation of a novel high-performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS) method for the accurate determination of USC-PFAS (carbon chain length from one to four, C1-C4) in tomato-based products (i.

View Article and Find Full Text PDF

Disordered Inverse Photonic Beads Assembled From Linear Block Copolymers.

Angew Chem Int Ed Engl

September 2025

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulju-gun, UNIST-gil 50, Ulsan, 44919, Republic of Korea.

Structurally colored colloids, or photonic pigments, offer a sustainable alternative to conventional dyes, yet existing systems are constrained by limited morphologies and complex synthesis. In particular, achieving angle-independent color typically relies on disordered inverse architectures formed from synthetically demanding bottlebrush block copolymers (BCPs), hindering scalability and functional diversity. Here, we report a conceptually distinct strategy to assemble three-dimensional inverse photonic glass microparticles using amphiphilic linear BCPs (poly(styrene-block-4-vinylpyridine), PS-b-P4VP) via an emulsion-templated process.

View Article and Find Full Text PDF

Monolithic perovskite/silicon tandem (PST) solar cells are rapidly emerging as next-generation solar cells with significant potential for commercialization. This study presents a proof of concept for a silicon diffused junction-based PST cell, utilizing a passivated emitter rear contact (PERC) cell with a low-temperature (<200 °C) laser-fired contact process to minimize thermal damage. By introducing amorphous silicon to the emitter surface of PERC bottom cell, the open circuit voltage (V) improve from 0.

View Article and Find Full Text PDF