A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Improvement of O/W emulsion performance by adjusting the interaction between gelatin and bacterial cellulose nanofibrils. | LitMetric

Improvement of O/W emulsion performance by adjusting the interaction between gelatin and bacterial cellulose nanofibrils.

Carbohydr Polym

College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National R&D Center for Citrus Preservation, Huazhong Agricultural University, Wuhan, Hubei 430070, China; School of Materials and Engineering, Zhengzhou University, No. 100. Science Avenue, Zhengzhou

Published: January 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study was designed to improve the stability of medium internal phase emulsion by adjusting the electrostatic interaction between gelatin (GLT) and TEMPO-oxidized bacterial cellulose nanofibrils (TOBC). The influences of polysaccharide-protein ratio (1:10, 1:5, and 1:2.5) and pH (3.0, 4.7, 7.0, and 11.0) on the emulsion properties were investigated. The droplet size of TOBC/GLT-stabilized emulsion was increased with the TOBC proportion increasing at pH 3.0-11.0. Additionally, emulsion had a larger droplet size at pH 4.7 (the electrical equivalence point pH of mixtures). However, the addition of TOBC significantly improved the emulsion stability. The emulsions prepared with TOBC/GLT mixtures (mixing ratio of 1:2.5) at pH 3.0-7.0 were stable without creaming during the storage. It was because the formation of nanofibrils network impeded the droplet mobility, and the emulsion viscosity and viscoelastic modulus were increased with the addition of TOBC. These findings were meaningful to modulate the physical properties of emulsions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118806DOI Listing

Publication Analysis

Top Keywords

interaction gelatin
8
bacterial cellulose
8
cellulose nanofibrils
8
droplet size
8
addition tobc
8
emulsion
7
improvement o/w
4
o/w emulsion
4
emulsion performance
4
performance adjusting
4

Similar Publications