Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The inflammatory indexes of children with Takayasu arteritis (TAK) usually tend to be normal immediately after treatment, therefore, CT angiography (CTA) has become an important method to evaluate the status of TAK and sometime is even more sensitive than laboratory test results.

Objective: To evaluate image quality improvement in CTA of children diagnosed with TAK using a deep learning image reconstruction (DLIR) in comparison to other image reconstruction algorithms.

Methods: hirty-two TAK patients (9.14±4.51 years old) underwent neck, chest and abdominal CTA using 100 kVp were enrolled. Images were reconstructed at 0.625 mm slice thickness using Filtered Back-Projection (FBP), 50%adaptive statistical iterative reconstruction-V (ASIR-V), 100%ASIR-V and DLIR with high setting (DLIR-H). CT number and standard deviation (SD) of the descending aorta and back muscle were measured and contrast-to-noise ratio (CNR) for aorta was calculated. The vessel visualization, overall image noise and diagnostic confidence were evaluated using a 5-point scale (5, excellent; 3, acceptable) by 2 observers.

Results: There was no significant difference in CT number across images reconstructed using different algorithms. Image noise values (in HU) were 31.36±6.01, 24.96±4.69, 18.46±3.91 and 15.58±3.65, and CNR values for aorta were 11.93±2.12, 15.66±2.37, 22.54±3.34 and 24.02±4.55 using FBP, 50%ASIR-V, 100%ASIR-V and DLIR-H, respectively. The 100%ASIR-V and DLIR-H images had similar noise and CNR (all P > 0.05), and both had lower noise and higher CNR than FBP and 50%ASIR-V images (all P < 0.05). The subjective evaluation suggested that all images were diagnostic for large arteries, however, only 50%ASIR-V and DLIR-H met the diagnostic requirement for small arteries (3.03±0.18 and 3.53±0.51).

Conclusion: DLIR-H improves CTA image quality and diagnostic confidence for TAK patients compared with 50%ASIR-V, and best balances image noise and spatial resolution compared with 100%ASIR-V.

Download full-text PDF

Source
http://dx.doi.org/10.3233/XST-211033DOI Listing

Publication Analysis

Top Keywords

image reconstruction
12
deep learning
8
learning image
8
image quality
8
children takayasu
8
takayasu arteritis
8
images reconstructed
8
image noise
8
fbp 50%asir-v
8
100%asir-v dlir-h
8

Similar Publications

Deep feature engineering for accurate sperm morphology classification using CBAM-enhanced ResNet50.

PLoS One

September 2025

School of Computer Science, CHART Laboratory, University of Nottingham, Nottingham, United Kingdom.

Background And Objective: Male fertility assessment through sperm morphology analysis remains a critical component of reproductive health evaluation, as abnormal sperm morphology is strongly correlated with reduced fertility rates and poor assisted reproductive technology outcomes. Traditional manual analysis performed by embryologists is time-intensive, subjective, and prone to significant inter-observer variability, with studies reporting up to 40% disagreement between expert evaluators. This research presents a novel deep learning framework combining Convolutional Block Attention Module (CBAM) with ResNet50 architecture and advanced deep feature engineering (DFE) techniques for automated, objective sperm morphology classification.

View Article and Find Full Text PDF

Background: Underwater environments face challenges with image degradation due to light absorption and scattering, resulting in blurring, reduced contrast, and color distortion. This significantly impacts underwater exploration and environmental monitoring, necessitating advanced algorithms for effective enhancement.

Objectives: The study aims to develop an innovative underwater image enhancement algorithm that integrates physical models with deep learning to improve visual quality and surpass existing methods in performance metrics.

View Article and Find Full Text PDF

YOLOv11-WBD: A wavelet-bidirectional network with dilated perception for robust metal surface defect detection.

PLoS One

September 2025

Department of Smart Manufacturing, Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center of Jiangsu Province, Nanjing Vocational University of Industry Technology, Nanjing, Jiangsu, China.

In the field of quality control, metal surface defect detection is an important yet challenging task. Although YOLO models perform well in most object detection scenarios, metal surface images under operational conditions often exhibit coexisting high-frequency noise components and spectral aliasing background textures, and defect targets typically exhibit characteristics such as small scale, weak contrast, and multi-class coexistence, posing challenges for automatic defect detection systems. To address this, we introduce concepts including wavelet decomposition, cross-attention, and U-shaped dilated convolution into the YOLO framework, proposing the YOLOv11-WBD model to enhance feature representation capability and semantic mining effectiveness.

View Article and Find Full Text PDF

Achieving optimal alignment and fit is a key aspect of ankle-foot orthosis (AFO) design, as it directly influences the effectiveness of the device. While digital workflows offer the potential to integrate quantifiable alignment measures and corrections into AFO design, a major challenge remains in controlling lower-limb positioning and alignment during 3D scanning. This study aimed to evaluate pediatric AFO alignment and shape differences of directly scanned (live scan) vs casted lower limb models.

View Article and Find Full Text PDF

SPM as a cornerstone of an open source software ecosystem for neuroimaging.

Cereb Cortex

August 2025

Department of Psychology, Stanford University, 450 Jane Stanford Way, Building 420, Stanford, CA 94305, United States.

The SPM software package played a major role in the establishment of open source software practices within the field of neuroimaging. I outline its role in my career development and the impact it has had within our field.

View Article and Find Full Text PDF