Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The number of patients diagnosed with rectal neuroendocrine tumors (R-NETs) is increasing year by year. An integrated survival predictive model is required to predict the prognosis of R-NETs. The present study is aimed at exploring epidemiological characteristics of R-NETs based on a retrospective study from the Surveillance, Epidemiology, and End Results (SEER) database and predicting survival of R-NETs with machine learning. Data of patients with R-NETs were extracted from the SEER database (2000-2017), and data were also retrospectively collected from a single medical center in China. The main outcome measure was the 5-year survival status. Risk factors affecting survival were analyzed by Cox regression analysis, and six common machine learning algorithms were chosen to build the predictive models. Data from the SEER database were divided into a training set and an internal validation set according to the year 2010 as a time point. Data from China were chosen as an external validation set. The best machine learning predictive model was compared with the American Joint Committee on Cancer (AJCC) seventh staging system to evaluate its predictive performance in the internal validation dataset and external validation dataset. A total of 10,580 patients from the SEER database and 68 patients from a single medical center were included in the analysis. Age, gender, race, histologic type, tumor size, tumor number, summary stage, and surgical treatment were risk factors affecting survival status. After the adjustment of parameters and algorithms comparison, the predictive model using the eXtreme Gradient Boosting (XGBoost) algorithm had the best predictive performance in the training set [area under the curve (AUC) = 0.87, 95%CI: 0.86-0.88]. In the internal validation, the predictive ability of XGBoost was better than that of the AJCC seventh staging system (AUC: 0.90 vs. 0.78). In the external validation, the XGBoost predictive model (AUC = 0.89) performed better than the AJCC seventh staging system (AUC = 0.83). The XGBoost algorithm had better predictive power than the AJCC seventh staging system, which had a potential value of the clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595336PMC
http://dx.doi.org/10.3389/fsurg.2021.745220DOI Listing

Publication Analysis

Top Keywords

machine learning
16
predictive model
16
seer database
16
ajcc seventh
16
seventh staging
16
staging system
16
internal validation
12
external validation
12
predictive
9
predicting survival
8

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF