98%
921
2 minutes
20
Seawater acidification can cause threats to both calcifying and uncalcifying marine organisms, affecting their acid-base regulatory functions, immune system and biomineralization. Marine pollutants, such as cadmium (Cd) that is globally distributed in coastal ecosystems, do not affect organisms alone but commonly as combined stressors. To investigate the toxicological effects of Cd on the immune and biomineralization of marine fishes under seawater acidification, flounder Paralichthys olivaceus was exposed to seawater acidification (control (pH 8.10), 7.70 and 7.30) and Cd exposure (control (0.36 μg L), 0.01 and 0.15 mg L Cd) for 49 days from embryonic stage until they became settled. Immune and biomineralization-related biomarkers of flounder at the end of exposure were investigated. Results showed that single seawater acidification and Cd exposure or combined exposure significantly affected the immune system-related enzyme activities. Specifically, lysozyme (LZM) activity was significantly inhibited by single seawater acidification and Cd exposure, indicating innate immunosuppression under two stressors. Contents of IgM, HSP70 and MT were induced by seawater acidification or Cd exposure, indicating a detoxification mechanism that responded to the stressors. The expressions of immune-related genes were upregulated (hsp70 and mt) or downregulated (lzm) under Cd exposure. Of the biomineralization-related enzymes, activities of carbonic anhydrase (CA), Na/K-ATPase and Ca-ATPase increased under seawater acidification and Cd exposure, a potential mechanism in response to changes of acid-base balance induced by the stressors. Generally, immune and biomineralization of the flounder responded more sensitively to Cd exposure than seawater acidification. Seawater acidification aggravated the toxicological effects of Cd exposure on the two physiological functions, while high Cd exposure augmented their responses to seawater acidification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.132919 | DOI Listing |
Elife
September 2025
Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig Maximilians-Universität München, Munich, Germany.
The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.
View Article and Find Full Text PDFMar Environ Res
August 2025
Hellenic Centre for Marine Research, Institute of Oceanography, Heraklion, Greece.
Ocean acidification (OA) due to anthropogenic CO2 emissions has significantly altered ocean chemistry since the industrial era. Ocean alkalinity enhancement (OAE) is an innovative strategy to mitigate excess CO, with ocean liming (OL) serving as a potential carbon dioxide removal (CDR) method, through the spreading of Ca(OH) (slaked lime) at the ocean surface. This study examined the ecological effects of OL on a natural zooplankton community from the ultraoligotrophic Eastern Mediterranean Sea during a 14-day mesocosm experiment conducted in spring-summer.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
July 2025
National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center
Tetraodontiformes species exhibit several evolutionary innovations, notably the convergent evolution of two traits in some clades: defensive body inflation and the loss of acid-peptic digestion. It has been widely believed that the evolution of body inflation drove the loss of gastric digestion, as ingesting seawater during inflation would hinder acidification and ultimately lead to the loss of gastric digestion. Leveraging accumulating genome resources, we investigated the presence, synteny, gene expression, and rapid evolution of nine genes associated with acid-peptic digestion across seven species from four Tetraodontiformes families, representing two branches that underwent convergent evolution.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Key Laboratory of Mariculture of Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China.
Bivalve farming, a vital component of global aquaculture, has been proposed as a potential marine carbon dioxide removal (mCDR) strategy, yet its role remains contentious. Using field mesocosms, we demonstrate that oyster filter-feeding enhances mCDR by accelerating the formation of particulate and dissolved organic carbon in the water column and promoting organic carbon deposition in sediments. This process shifts the water column toward a more autotrophic and alkaline state, effectively sequestering CO from the atmosphere.
View Article and Find Full Text PDFSci Adv
August 2025
Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA 70118, USA.
Ocean acidification poses a threat to coral skeleton formation via reductions in the saturation state of aragonite (Ω) in seawater. Given that corals precipitate their skeletons from a calcifying fluid supplied by seawater, reductions in seawater Ω should, in theory, confound calcification. Here, we reconstruct up to 200 years of coral calcifying fluid Ω, using Raman spectroscopy techniques, at approximately monthly resolution in two sp.
View Article and Find Full Text PDF