Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The leaf of a deciduous species completes its life cycle in a few months. During leaf maturation, osmolyte accumulation leads to a significant reduction of the turgor loss point (Ψ ), a known marker for stomatal closure. Here we exposed two grapevine cultivars to drought at three different times during the growing season to explore if the seasonal decrease in leaf Ψ influences the stomatal response to drought. The results showed a significant seasonal shift in the response of stomatal conductance to stem water potential (g ~Ψ ), demonstrating that grapevines become increasingly tolerant to low Ψ as the season progresses in coordination with the decrease in Ψ . We also used the SurEau hydraulic model to demonstrate a direct link between osmotic adjustment and the plasticity of g ~Ψ . To understand the possible advantages of g ~Ψ plasticity, we incorporated a seasonally dynamic leaf osmotic potential into the model that simulated stomatal conductance under several water availabilities and climatic scenarios. The model demonstrated that a seasonally dynamic stomatal closure threshold results in trade-offs: it reduces the time to turgor loss under sustained long-term drought, but increases overall gas exchange particularly under seasonal shifts in temperature and stochastic water availability. A projected hotter future is expected to lower the increase in gas exchange that plants gain from the seasonal shift in g ~Ψ . These findings show that accounting for dynamic stomatal regulation is critical for understanding drought tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.15591DOI Listing

Publication Analysis

Top Keywords

increasingly tolerant
8
tolerant low
8
growing season
8
turgor loss
8
stomatal closure
8
seasonal shift
8
stomatal conductance
8
seasonally dynamic
8
dynamic stomatal
8
gas exchange
8

Similar Publications

Background: Stored-product insects (Sitophilus spp., Plodia interpunctella, Sitotroga cerealella) drive substantial postharvest losses and increasingly resist synthetic fumigants. Valeriana wallichii roots yield volatile oils rich in short-chain acids and sesquiterpenes.

View Article and Find Full Text PDF

Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.

View Article and Find Full Text PDF

Global salinization increasingly threatens ecosystem integrity and the regulation of biogeochemical cycles. Our study reveals novel insights into the microbial contributions to the organohalide decomposition in saline environments, demonstrating the unprecedented ability of organohalide-respiring bacteria and to completely dechlorinate trichloroethene to non-toxic ethene under hypersaline conditions (up to 31.3 g/L) in long-term operations.

View Article and Find Full Text PDF

Heterosis refers to the superior performance of hybrids over their parents (inbred lines) in one or more characteristics. Hence, understanding this process is crucial for addressing food insecurity. This review explores the traditional genetic models proposed to explain heterosis and integrates them with emerging perspectives such as epigenetic studies and multi-omics approaches which are increasingly used to investigate the molecular basis of heterosis in plants.

View Article and Find Full Text PDF

Melatonin's Role in Enhancing Waterlogging Tolerance in Plants: Current Understanding and Future Directions.

Physiol Plant

September 2025

Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain.

Waterlogging, increasingly intensified by climate change, limits oxygen availability in the root zone, disrupting carbon and sugar metabolism, leading to energy deficits and oxidative stress that ultimately impair plant growth and productivity. Melatonin, a versatile signaling molecule, mitigates waterlogging-induced stress by enhancing anaerobic respiration and fermentation under oxygen-deprived conditions, upregulating stress-responsive genes, and restoring energy balance through optimized sugar metabolism. It also reduces oxidative damage by strengthening the antioxidant defense system and further improves stress tolerance by modulating phytohormone signaling and influencing rhizosphere microbiome dynamics.

View Article and Find Full Text PDF