98%
921
2 minutes
20
Background: Inadequate screening and diagnostic testing in the United States throughout the first several months of the COVID-19 pandemic led to undetected cases transmitting disease in the community and an underestimation of cases. Though testing supply has increased, maintaining testing uptake remains a public health priority in the efforts to control community transmission considering the availability of vaccinations and threats from variants.
Objective: This study aimed to identify patterns of preferences for SARS-CoV-2 screening and diagnostic testing prior to widespread vaccine availability and uptake.
Methods: We conducted a discrete choice experiment (DCE) among participants in the national, prospective CHASING COVID (Communities, Households, and SARS-CoV-2 Epidemiology) Cohort Study from July 30 to September 8, 2020. The DCE elicited preferences for SARS-CoV-2 test type, specimen type, testing venue, and result turnaround time. We used latent class multinomial logit to identify distinct patterns of preferences related to testing as measured by attribute-level part-worth utilities and conducted a simulation based on the utility estimates to predict testing uptake if additional testing scenarios were offered.
Results: Of the 5098 invited cohort participants, 4793 (94.0%) completed the DCE. Five distinct patterns of SARS-CoV-2 testing emerged. Noninvasive home testers (n=920, 19.2% of participants) were most influenced by specimen type and favored less invasive specimen collection methods, with saliva being most preferred; this group was the least likely to opt out of testing. Fast-track testers (n=1235, 25.8%) were most influenced by result turnaround time and favored immediate and same-day turnaround time. Among dual testers (n=889, 18.5%), test type was the most important attribute, and preference was given to both antibody and viral tests. Noninvasive dual testers (n=1578, 32.9%) were most strongly influenced by specimen type and test type, preferring saliva and cheek swab specimens and both antibody and viral tests. Among hesitant home testers (n=171, 3.6%), the venue was the most important attribute; notably, this group was the most likely to opt out of testing. In addition to variability in preferences for testing features, heterogeneity was observed in the distribution of certain demographic characteristics (age, race/ethnicity, education, and employment), history of SARS-CoV-2 testing, COVID-19 diagnosis, and concern about the pandemic. Simulation models predicted that testing uptake would increase from 81.6% (with a status quo scenario of polymerase chain reaction by nasal swab in a provider's office and a turnaround time of several days) to 98.1% by offering additional scenarios using less invasive specimens, both viral and antibody tests from a single specimen, faster turnaround time, and at-home testing.
Conclusions: We identified substantial differences in preferences for SARS-CoV-2 testing and found that offering additional testing options would likely increase testing uptake in line with public health goals. Additional studies may be warranted to understand if preferences for testing have changed since the availability and widespread uptake of vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722498 | PMC |
http://dx.doi.org/10.2196/32846 | DOI Listing |
PLoS One
September 2025
Addis Ababa University, College of Health Science, Addis Ababa, Ethiopia.
Introduction: Prolonged Emergency Department (ED) stays, a global issue driving overcrowding, were exacerbated at our hospital by lab delays and extended waits, increasing patient stress. This study aimed to reduce hematology patients' length of stay (LOS). Using the fishbone method to identify care barriers, three interventions were implemented: redesigned lab referral systems, an online specialist communication platform, and patient navigation floor maps.
View Article and Find Full Text PDFClin Infect Dis
September 2025
Department of Global Health, Amsterdam University Medical Center, Amsterdam, the Netherlands.
Background: South Africa faces emerging resistance to TB drugs like bedaquiline. Phenotypic drug susceptibility testing (DST), the current reference standard for bedaquiline DST, has long turnaround times. Targeted next-generation sequencing (tNGS) offers a comprehensive alternative, potentially delivering faster results.
View Article and Find Full Text PDFDigit Health
September 2025
Information Technology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
Objective: To evaluate the impact of integrating digital shadow technology with Lean Six Sigma methodology on intra-laboratory turnaround time (TAT) in a high-volume clinical laboratory, and to demonstrate how digital shadow architectures can enhance process visibility and drive sustainable operational improvements.
Methods: A retrospective, two-phase study was conducted in a tertiary cancer hospital from January to December 2024. Digital shadow technology was implemented by leveraging real-time, time-stamped data from the laboratory information system (LIS) to map specimen workflow milestones.
J Cyst Fibros
September 2025
Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA.
Recent improvements in cell-free DNA technology have enabled non-invasive prenatal testing (NIPT) to screen for fetal single-gene autosomal recessive conditions from maternal blood as early as the first trimester. This technique can determine the fetal risk for cystic fibrosis (CF) with a single blood sample from a pregnant person without the need for a partner sample, which is required for traditional carrier screening. A retrospective review of 100,106 consecutive general-risk pregnant patients who underwent CF carrier screening was completed.
View Article and Find Full Text PDFClin Biochem
September 2025
Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E6, Canada; Department of Pathology and Laboratory Medicine, Saskatchewan Health Authority, Saskatoon, SK S7M 0Z9, Canada. Electronic address:
Background: 5-Fluorouracil (5-FU) and its pro-drug, capecitabine, are widely used to treat solid tumors. Patients with dihydropyrimidine dehydrogenase (DPYD) deficiency are at increased risk for severe treatment-related toxicity. This study reported the implementation of DPYD genotyping in clinical practice and assessed the impact of genotype-guided dosing on clinical outcomes.
View Article and Find Full Text PDF