Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The gene encodes a part of the dynamic protein, and the protein mutations may further affect the growth and development of neurons, resulting in degeneration of anterior horn cells of the spinal cord, and a variety of clinical phenotypes finally resulting in axonal Charcot-Marie-Tooth disease type 20 (CMT20), mental retardation 13 (MRD13) and spinal muscular atrophy with lower extremity predominant 1 (SMA-LED). The incidence of the disease is low, and it is difficult to diagnose, especially in children. Here, we report a case of gene mutation and review the related literature to improve the pediatrician's understanding of gene-related disease to make an early correct diagnosis and provide better services for children.

Case Summary: A 4-mo-old Chinese female child with adducted thumbs, high arch feet, and epileptic seizure presented slow response, delayed development, and low limb muscle strength. Electroencephalogram showed abnormal waves, a large number of multifocal sharp waves, sharp slow waves, and multiple spasms with a series of attacks. High-throughput sequencing and Sanger sequencing identified a heterozygous mutation, c.5885G>A (p.R1962H), in the gene (NM_001376) of the proband, which was not identified in her parents. Combined with the clinical manifestations and pedigree of this family, this mutation is likely pathogenic based on the American Academy of Medical Genetics and Genomics guidelines. The child was followed when she was 1 year and 2 mo old. The magnetic resonance imaging result was consistent with the findings of white matter myelinated dysplasia and congenital giant gyrus. The extensive neurogenic damage to the extremities was considered, as the results of electromyography showed that the motor conduction velocity and sensory conduction of the nerves of the extremities were not abnormal, and the degree of fit of the children with severe contraction was poor. At present, the child is 80 cm in length and 9 kg in weight, with slender limbs and low muscle strength, and still does not raise her head. She cannot sit or speak. Speech, motor, and mental development was significantly delayed. There is still no effective treatment for this disease.

Conclusion: We herein report a variant of gene, c.5885G>A (p.R1962H), leading to overlapping phenotypes (seizure, general growth retardation, and muscle weakness) of CMT20, MRD13, and SMA-LED, but there is no effective treatment for such condition. Our case enriches the gene mutation spectrum and provides an important basis for clinical diagnosis and treatment and genetic counseling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8567516PMC
http://dx.doi.org/10.12998/wjcc.v9.i30.9302DOI Listing

Publication Analysis

Top Keywords

muscle weakness
8
gene mutation
8
muscle strength
8
c5885g>a pr1962h
8
effective treatment
8
gene
6
missense mutation
4
mutation gene
4
gene caused
4
caused psychomotor
4

Similar Publications

Monoclonal gammopathy-associated myopathies (MGAMs) are rare yet treatable myopathies that occur in association with monoclonal gammopathies. These myopathies include light chain (AL) amyloidosis myopathy, sporadic late-onset nemaline myopathy (SLONM), scleromyxedema with associated myopathy, and newly reported monoclonal gammopathy-associated glycogen storage myopathy (MGGSM), including the vacuolar myopathy with monoclonal gammopathy and stiffness. All these 4 distinct subtypes of MGAMs typically present in patients aged 40 or older, frequently with a subacute onset of rapidly progressive proximal and axial muscle weakness.

View Article and Find Full Text PDF

Protective Role of Apelin in a Mouse Model of Post-Intensive Care Syndrome.

Am J Respir Cell Mol Biol

September 2025

University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada.

Post-Intensive Care Syndrome (PICS) is a serious condition involving physical weakness, depression, and cognitive impairment that develop during or after an intensive care unit (ICU) stay, often resulting in long-term declines in quality of life. Patients with acute respiratory distress syndrome (ARDS) and severe COVID-19 are at particularly high risk, yet the molecular mechanisms underlying PICS remain poorly understood. Here, we identify impaired Apelin-APJ signaling as a potential contributor to PICS pathogenesis via disruption of inter-organ homeostasis.

View Article and Find Full Text PDF

Background: Single-leg stance requires pelvic stability, largely supported by the hip abductors. Differences in hip abductor activation between sexes and individuals with or without musculoskeletal conditions may relate to abductor weakness. However, the relationship between hip abduction strength and muscle activation during stance, and whether this is moderated by sex, remains unclear.

View Article and Find Full Text PDF

Skeletal muscle atrophy and weakness are major contributors to morbidity, prolonged recovery, and long-term disability across a wide range of diseases. Atrophy is caused by breakdown of sarcomeric proteins resulting in loss of muscle mass and strength. Molecular mechanism underlying the onset of muscle atrophy and its progression have been analysed in patients, mice, and cell culture but the complementarity of these model systems remains to be explored.

View Article and Find Full Text PDF

Introduction: No head-to-head studies comparing the efficacy of avalglucosidase alfa (AVA) with cipaglucosidase alfa + miglustat (Cipa+mig) have been conducted in patients with late-onset Pompe disease (LOPD). Two indirect treatment comparisons (ITCs) were conducted to estimate the effects of AVA versus Cipa+mig.

Methods: ITCs were conducted using simulated treatment comparisons (STCs), adjusting for differences in prognostic factors and treatment effect modifiers.

View Article and Find Full Text PDF