Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Heterozygous genomes are widespread in outcrossing and clonally propagated crops. However, the variation in heterozygosity underlying key agronomic traits and crop domestication remains largely unknown. Cassava is a staple crop in Africa and other tropical regions and has a highly heterozygous genome.

Results: We describe a genomic variation map from 388 resequenced genomes of cassava cultivars and wild accessions. We identify 52 loci for 23 agronomic traits through a genome-wide association study. Eighteen allelic variations in heterozygosity for nine candidate genes are significantly associated with seven key agronomic traits. We detect 81 selective sweeps with decreasing heterozygosity and nucleotide diversity, harboring 548 genes, which are enriched in multiple biological processes including growth, development, hormone metabolisms and responses, and immune-related processes. Artificial selection for decreased heterozygosity has contributed to the domestication of the large starchy storage root of cassava. Selection for homozygous GG allele in MeTIR1 during domestication contributes to increased starch content. Selection of homozygous AA allele in MeAHL17 is associated with increased storage root weight and cassava bacterial blight (CBB) susceptibility. We have verified the positive roles of MeTIR1 in increasing starch content and MeAHL17 in resistance to CBB by transient overexpression and silencing analysis. The allelic combinations in MeTIR1 and MeAHL17 may result in high starch content and resistance to CBB.

Conclusions: This study provides insights into allelic variation in heterozygosity associated with key agronomic traits and cassava domestication. It also offers valuable resources for the improvement of cassava and other highly heterozygous crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594203PMC
http://dx.doi.org/10.1186/s13059-021-02524-7DOI Listing

Publication Analysis

Top Keywords

agronomic traits
16
variation heterozygosity
12
key agronomic
12
starch content
12
highly heterozygous
8
associated key
8
storage root
8
selection homozygous
8
homozygous allele
8
cassava
7

Similar Publications

The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops (IPK) harbours over 3000 pea plant genetic resources (PGRs), backed up by corresponding information across 16 key agronomic and economical traits. The unbalanced structure and inconsistent format of this historical data has precluded effective leverage of genebank accessions, despite the opportunities contained in its genetic diversity. Therefore, a three-step statistical approach founded in linear mixed models was implemented to enable a rigorous and targeted data curation.

View Article and Find Full Text PDF

Precision plant epigenome editing: what, how, and why.

Trends Plant Sci

September 2025

School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, Australia, 4072. Electronic address:

Advances in genome engineering have paved the way for targeted epigenome engineering, providing fundamental insights into the role of epigenetic modifications in trait inheritance. Engineered epialleles have already delivered stable, heritable changes in agronomic traits. Despite this capacity, progress in the field has not yet achieved its potential, leaving many avenues of research unexplored.

View Article and Find Full Text PDF

Deciphering the genetic regulation of flowering time in rapeseed for early-maturation breeding.

J Genet Genomics

September 2025

College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China. Elec

Flowering time is a critical agronomic trait with a profound effect on the productivity and adaptability of rapeseed (Brassica napus L.). Strategically advancing flowering time can reduce the risk of yield losses due to extreme climatic conditions and facilitate the cultivation of subsequent crops on the same land, thereby enhancing overall agricultural efficiency.

View Article and Find Full Text PDF

A single-nucleotide polymorphism in BoDW1 encoding microtubule-associated kinase causes dwarfing in Brassica oleracea.

Plant Physiol Biochem

September 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. Electronic address:

Cabbage (Brassica oleracea var. capitata) is an important vegetable crop that is widely cultivated throughout the world. Plant height is a key agronomic trait in cabbage, influencing architecture and yield, and is mainly determined by cell division and stem expansion.

View Article and Find Full Text PDF

Yield potential and stress adaptation are not mutually exclusive: wheat as a case study.

Trends Plant Sci

September 2025

Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; AGROTECNIO (Center of Research in Agrotechnology), Lleida, Spain. Electronic address:

Wheat is a primary staple crop worldwide, grown in a wide range of environments, leading to significant yield variation. Improving wheat yield potential and resilience against abiotic and biotic stresses are critical to food security. A perennial debate is to breed for yield potential or for adaptation to specific conditions.

View Article and Find Full Text PDF