98%
921
2 minutes
20
We study the outflow of soft particles through quasi-two-dimensional hoppers with both experiments and simulations. The experiments utilize spheres made with hydrogel, silicone rubber, and glass. The hopper chamber has an adjustable exit width and tilt angle (the latter to control the magnitude of gravitational forcing). Our simulation mimics the experiments using purely two-dimensional soft particles with viscous interactions but no friction. Results from both simulations and experiments demonstrate that clogging is easier for reduced gravitational force or stiffer particles. For particles with low or no friction, the average number of particles in a clogging arch depends only on the ratio between hopper exit width and the mean particle diameter. In contrast, for the silicone rubber particles with larger frictional interactions, arches have more particles than the low friction cases. Additionally, an analysis of the number of particles left in the hopper when clogging occurs provides evidence for a hydrostatic pressure effect that is relevant for the clogging of soft particles, but less so for the harder (glass) or frictional (silicone rubber) particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.104.044909 | DOI Listing |
Phys Rev Lett
August 2025
Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan 430079, China.
Diffusion wake accompanying a Mach cone is a unique feature of the medium response to projectiles traveling at a speed faster than the velocity of sound. This is also the case for jet-medium interaction inside the quark-gluon plasma in high-energy heavy-ion collisions. It leads to a depletion of soft hadrons in the opposite direction of the propagating jet and, recently, has been observed in Z-jet events of Pb+Pb collisions at LHC.
View Article and Find Full Text PDFLangmuir
September 2025
Process Engineering in Life Science Engineering, HTW Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin, Germany.
Pickering emulsions (PEs), where water-in-oil (w/o) droplets are stabilized by nanoparticles (NPs), offer a promising platform for biocatalysis by providing a large interfacial area crucial for efficient substrate conversion. While several lipase catalyzed reactions in PEs have been demonstrated, the exact interfacial structure is unknown. This study focuses on the interfacial network formed by NPs and lipase (CRL) at the octanol/water-interface by varying pH and NP charge.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Artificial Intelligence, Donders Center for Cognition, Radboud University, Nijmegen, GD 6525, Netherlands.
We present a geometric design rule for size-controlled clustering of self-propelled particles. We show that active particles that tend to rotate under an external force have an intrinsic, signed parameter with units of curvature which we call curvity, that can be derived from first principles. Experiments with robots and numerical simulations show that properties of individual robots (radius and curvity) control pair cohesion in a binary system, and the stability of flocking and self-limiting clustering in a swarm, with applications in metamaterials and in embodied decentralized control.
View Article and Find Full Text PDFTop Curr Chem (Cham)
September 2025
Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates.
Controlling the size of gold nanoparticles (AuNPs) has been critical in diagnostics, biomolecular sensing, targeted therapy, wastewater treatment, catalysis, and sensing applications. Ultrasmall AuNPs (uAuNPs), with sizes Ranging from 2 to 5 nm, and gold nanoclusters (AuNCs), with sizes less than 2 nm, are often dealt with interchangeably in the literature, making it challenging to review them separately. Although they are grouped in our discussion, their chemical and physical properties differ significantly, partly due to their electronic properties.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
Spectroscopic soft sensors are developed by combining spectral data with chemometric modeling, and offer as Process Analytical Technology (PAT) tools powerful insights into biopharmaceutical processing. In this study, soft sensors based on Raman spectroscopy and linear or partial least squares (PLS) regression were developed and successfully transferred to a filtration-based recovery step of precipitated virus-like particles (VLPs). For near real-time monitoring of product accumulation and precipitant depletion, the dual-stage cross-flow filtration (CFF) set-up was equipped with an on-line loop in the second membrane stage.
View Article and Find Full Text PDF