98%
921
2 minutes
20
Muscle invasive bladder cancer (MIBC) is a malignancy with considerable heterogeneity. The MIBC tumor microenvironment (TME) is highly complex, comprising diverse phenotypes and spatial architectures. The complexity of the MIBC TME must be characterized to provide potential targets for precision therapy. Herein, an integrated combination of mass cytometry and imaging mass cytometry was used to analyze tumor cells, immune cells, and TME spatial characteristics of 44 MIBC patients. We detected tumor and immune cell clusters with abnormal phenotypes. In particular, we identified a previously overlooked cancer stem-like cell cluster (ALDHPD-L1ER-β) that was strongly associated with poor prognosis. We elucidated the different spatial architectures of immune cells (excluded, infiltrated, and deserted) and tumor-associated collagens (curved, stretched, directionally distributed, and chaotic) in the MIBC TME. The present study is the first to provide in-depth insight into the complexity of the MIBC TME at the single-cell level. Our results will improve the general understanding of the heterogeneous characteristics of MIBC, potentially facilitating patient stratification and personalized therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582554 | PMC |
http://dx.doi.org/10.3390/cancers13215440 | DOI Listing |
Genes Genomics
September 2025
Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
Background: Muscle-invasive bladder cancer (MIBC) is a clinically aggressive and heterogeneous disease with variable treatment responses. Transcriptome-based classifications, such as the Chemoresistance-Motility (CrM) signature, are valuable for understanding therapeutic resistance, but their clinical use is often hindered by high cost and tissue requirements. This study explores an alternative, scalable approach using deep learning analysis of whole slide images (WSIs).
View Article and Find Full Text PDFCommun Biol
May 2025
Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, University Engineering Research Center of Digital Medicine and Healthcare, Guangxi Medical University, Nanning, G
Muscle-invasive bladder cancer (MIBC) is characterized by a complex tumor microenvironment (TME) that drives aggressive progression and treatment resistance. Previous studies have highlighted the roles of cancer-associated fibroblasts (CAFs) and exhausted T (Tex) cells in MIBC, but their interactive mechanisms remain poorly understood. Here, single-cell RNA sequencing of 19 tissue samples from 12 patients-7 MIBC, 3 non-muscle-invasive bladder cancer (NMIBC), and 9 normal tissue samples-identified 13 transcriptionally distinct fibroblast clusters and 10 functionally heterogeneous T-cell subsets.
View Article and Find Full Text PDFDiscov Oncol
April 2025
NHC Key Laboratory of Molecular Probe and Targeted Theranostics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150001, China.
Purpose: Bladder cancer (BC) is characterized by high heterogeneity, with non-muscle-invasive (NMIBC) and muscle-invasive (MIBC) stages differing significantly in clinical behavior and outcomes. The transition from NMIBC to MIBC involves extensive tumor microenvironment (TME) remodeling, particularly in endothelial cells (ECs), which drive angiogenesis and modulate immune and extracellular matrix (ECM) interactions. However, the precise roles of ECs in this progression remain poorly defined.
View Article and Find Full Text PDFExplor Target Antitumor Ther
March 2025
Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy.
Bladder cancer (BC) is a heterogeneous disease associated with high mortality if not diagnosed early. BC is classified into non-muscle-invasive BC (NMIBC) and muscle-invasive BC (MIBC), with MIBC linked to poor systemic therapy response and high recurrence rates. Current treatments include transurethral resection with Bacillus Calmette-Guérin (BCG) therapy for NMIBC and radical cystectomy with chemotherapy and/or immunotherapy for MIBC.
View Article and Find Full Text PDFJ Transl Med
March 2025
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Background: The identification of the complex spatial architecture of immune cell infiltration and its interaction mechanisms within tumor ecosystems provides crucial insights into therapeutic responses to neoadjuvant therapy in muscle-invasive bladder cancer (MIBC). This study aims to characterize the spatial features of distinct cell-type niches within the tumor microenvironment (TME) of patients with varying responses to neoadjuvant therapy.
Methods: We performed spatial transcriptomic profiling on six MIBC specimens obtained from a registered clinical trial (ChiCTR2000032359), generating whole-transcriptome spatial atlases to map the TME architecture.