Evaluation of Muscle Function by Means of a Muscle-Specific and a Global Index.

Sensors (Basel)

Department of Electronics and Telecommunications and PoliToBIOMed Lab, Politecnico di Torino, 10129 Torino, Italy.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gait analysis applications in clinics are still uncommon, for three main reasons: (1) the considerable time needed to prepare the subject for the examination; (2) the lack of user-independent tools; (3) the large variability of muscle activation patterns observed in healthy and pathological subjects. Numerical indices quantifying the muscle coordination of a subject could enable clinicians to identify patterns that deviate from those of a reference population and to follow the progress of the subject after surgery or completing a rehabilitation program. In this work, we present two user-independent indices. First, a muscle-specific index (MFI) that quantifies the similarity of the activation pattern of a muscle of a specific subject with that of a reference population. Second, a global index (GFI) that provides a score of the overall activation of a muscle set. These two indices were tested on two groups of healthy and pathological children with encouraging results. Hence, the two indices will allow clinicians to assess the muscle activation, identifying muscles showing an abnormal activation pattern, and associate a functional score to every single muscle as well as to the entire muscle set. These opportunities could contribute to facilitating the diffusion of surface EMG analysis in clinics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587884PMC
http://dx.doi.org/10.3390/s21217186DOI Listing

Publication Analysis

Top Keywords

muscle activation
8
healthy pathological
8
reference population
8
activation pattern
8
muscle set
8
muscle
7
activation
5
evaluation muscle
4
muscle function
4
function muscle-specific
4

Similar Publications

TRIM39 reinforces E2-ESR1 signaling through SUMOylation of ESR1 to hinder the progression of aortic dissection.

Atherosclerosis

September 2025

Department of Cardiothoracic and Macrovascular Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, Hubei Province, 434020, China. Electronic address:

Background And Aims: Aortic dissection (AD) is one of the most dangerous and tricky diseases in the field of cardiovascular surgery, severely affecting public health. Recent studies have found that SUMOylation is linked to the pathogenesis of cardiovascular diseases. However, we know very little about the molecular mechanisms of SUMOylation in AD.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a rare lung disease caused by hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in a subset of mesenchymal lung cells. Histopathologically, LAM lesions have been described as immature smooth muscle-like cells positive for the immature melanocytic marker HMB45/PMEL/gp100 and phosphorylated ribosomal protein S6 (pS6). Advances in single cell sequencing (scRNA-seq) technology allowed us to group LAM cells according to their expression of cancer stem cell (CSC) genes and identify three clusters: a high CSC-like state (SLS), an intermediate state, and a low CSC-like inflammatory state (IS).

View Article and Find Full Text PDF

Purpose: Develop a musculoskeletal-environment interaction model to reconstruct the dynamic-interaction process in skiing.

Methods: This study established a skier-ski-snow interaction (SSSI) model that integrated a 3D full-body musculoskeletal model, a flexible ski model, a ski boot model, a ski-snow contact model, and an air resistance model. An experimental method was developed to collect kinematic and kinetic data using IMUs, GPS, and plantar pressure measurement insoles, which were cost-effective and capable of capturing motion in large-scale field conditions.

View Article and Find Full Text PDF

Background: Single-leg stance requires pelvic stability, largely supported by the hip abductors. Differences in hip abductor activation between sexes and individuals with or without musculoskeletal conditions may relate to abductor weakness. However, the relationship between hip abduction strength and muscle activation during stance, and whether this is moderated by sex, remains unclear.

View Article and Find Full Text PDF