98%
921
2 minutes
20
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583499 | PMC |
http://dx.doi.org/10.3390/ijms222111387 | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFEur J Med Res
September 2025
Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
Background: Recent advances in high-throughput sequencing technologies have enabled the collection and sharing of a massive amount of omics data, along with its associated metadata-descriptive information that contextualizes the data, including phenotypic traits and experimental design. Enhancing metadata availability is critical to ensure data reusability and reproducibility and to facilitate novel biomedical discoveries through effective data reuse. Yet, incomplete metadata accompanying public omics data may hinder reproducibility and reusability and limit secondary analyses.
View Article and Find Full Text PDFDiagn Pathol
September 2025
Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, Plön, Germany.
Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.
View Article and Find Full Text PDF