Adapting the Scar-in-a-Jar to Skin Fibrosis and Screening Traditional and Contemporary Anti-Fibrotic Therapies.

Front Bioeng Biotechnol

Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Skin fibrosis still constitutes an unmet clinical need. Although pharmacological strategies are at the forefront of scientific and technological research and innovation, their clinical translation is hindered by the poor predictive capacity of the currently available fibrosis models. Indeed, customarily utilised scarring models are conducted in a low extracellular matrix milieu, which constitutes an oxymoron for the in-hand pathophysiology. Herein, we coupled macromolecular crowding (enhances and accelerates extracellular matrix deposition) with transforming growth factor 1 (TGF1; induces trans-differentiation of fibroblasts to myofibroblasts) in human dermal fibroblast cultures to develop a skin fibrosis model and to screen a range of anti-fibrotic families (corticosteroids, inhibitors of histone deacetylases, inhibitors of collagen crosslinking, inhibitors of TGF1 and pleiotropic inhibitors of fibrotic activation). Data obtained demonstrated that macromolecular crowding combined with TGF1 significantly enhanced collagen deposition and myofibroblast transformation. Among the anti-fibrotic compounds assessed, trichostatin A (inhibitors of histone deacetylases); serelaxin and pirfenidone (pleiotropic inhibitors of fibrotic activation); and soluble TGF receptor trap (inhibitor of TGF signalling) resulted in the highest decrease of collagen type I deposition (even higher than triamcinolone acetonide, the gold standard in clinical practice). This study further advocates the potential of macromolecular crowding in the development of pathophysiology models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576412PMC
http://dx.doi.org/10.3389/fbioe.2021.756399DOI Listing

Publication Analysis

Top Keywords

skin fibrosis
12
macromolecular crowding
12
extracellular matrix
8
inhibitors histone
8
histone deacetylases
8
pleiotropic inhibitors
8
inhibitors fibrotic
8
fibrotic activation
8
inhibitors
6
adapting scar-in-a-jar
4

Similar Publications

Myopathology and Immune Profile of Granulomatous Myositis in Sarcoid Myopathy.

Neuropathol Appl Neurobiol

October 2025

Division of Rheumatology and Systemic Inflammatory Diseases, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Aims: Sarcoid myopathy (SaM) is characterised by granulomatous myositis (GM) and can overlap with inclusion body myositis (IBM), a late-onset chronic idiopathic inflammatory myopathy with a still enigmatic pathogenesis. As GM can occur in different clinical contexts, we aimed to examine the histomorphologic features and gene expression profiles in cases of definite SaM that may inform diagnostic and therapeutic considerations.

Methods: We performed a multidimensional characterisation of muscle biopsy specimens from patients with 'pure SaM' (n=17), SaM with concomitant IBM (SaM-IBM) (n=2), including histopathologic and ultrastructural analysis in addition to quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

Immunotherapies for Aging and Age-Related Diseases: Advances, Pitfalls, and Prospects.

Research (Wash D C)

September 2025

NHC Key Laboratory of Tropical Disease Control, School of Life Sciences and Medical Technology, Hainan Medical University, Haikou, Hainan 571199, China.

Aging is characterized by a gradual decline in the functionality of all the organs and tissues, leading to various diseases. As the global population ages, the urgency to develop effective anti-aging strategies becomes increasingly critical due to the growing severity of associated health problems. Immunotherapy offers novel and promising approaches to combat aging by utilizing approaches including vaccines, antibodies, and cytokines to target specific aging-related molecules and pathways.

View Article and Find Full Text PDF

Microenvironment-Driven Mast Cell Plasticity: Insights From Cytokine-Activated Gene Signatures in Skin and Respiratory Diseases.

Allergy

September 2025

Department of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK.

Mast cells (MCs) rapidly adapt to the microenvironment due to the plethora of cytokine receptors expressed. Understanding microenvironment-primed immune responses is essential to elucidate the phenotypic/functional changes MCs undergo, and thus understand their contribution to diseases and predict the most effective therapeutic strategies. We exposed primary human MCs to cytokines mimicking a T1/pro-inflammatory (IFNγ), T2/allergic (IL-4 + IL-13), alarmin-rich (IL-33) and pro-fibrotic/pro-tolerogenic (TGFβ) microenvironment.

View Article and Find Full Text PDF

5-Aminolevulinic acid-mediated photodynamic therapy improves scar healing of laryngeal wounds in rats.

Lasers Med Sci

September 2025

Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China.

To evaluated the efficacy of photodynamic therapy (PDT) in improving laryngeal mucosal wound scar healing in vivo and investigated its underlying mechanisms. Laryngeal mucosal wounds were induced in Sprague-Dawley rats. Two weeks post-injury, PDT was administered via intraperitoneal injection of 100 mg/kg 5-aminolevulinic acid (5-ALA) and 635-nm red laser irradiation at varying energy doses (15, 30, and 45 J/cm²).

View Article and Find Full Text PDF