98%
921
2 minutes
20
Here we report the results of an experimental and theoretical study of the gas-phase reactions between O(D) and HO and O(D) and DO at room temperature and below. On the experimental side, the kinetics of these reactions have been investigated over the 50-127 K range using a continuous flow Laval nozzle apparatus, coupled with pulsed laser photolysis and pulsed laser induced fluorescence for the production and detection of O(D) atoms respectively. Experiments were also performed at 296 K in the absence of a Laval nozzle. On the theoretical side, the existing full-dimensional ground X A potential energy surface for the HO system involved in this process has been reinvestigated and enhanced to provide a better description of the barrierless H-atom abstraction pathway. Based on this enhanced potential energy surface, quasiclassical trajectory calculations and ring polymer molecular dynamics simulations have been performed to obtain low temperature rate constants. The measured and calculated rate constants display similar behaviour above 100 K, showing little or no variation as a function of temperature. Below 100 K, the experimental rate constants increase dramatically, in contrast to the essentially temperature independent theoretical values. The possible origins of the divergence between experiment and theory at low temperatures are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp04614d | DOI Listing |
Environ Sci Process Impacts
September 2025
Aix Marseille Univ., CNRS, LCE, Marseille, France.
Surfactant-rich aqueous media are common in natural environments. The sea surface microlayer and sea spray droplets are good examples and are also frequently markedly enriched in organic pollutants. This study focuses on the degradation kinetics of organic pollutants initiated by the hydroxyl radical in such surfactant-rich environments.
View Article and Find Full Text PDFLuminescence
September 2025
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
A triphenyl-imidazole end-capped donor-acceptor type potential molecular probe 3 has been designed and synthesized. Probe 3 upon interaction with different classes of metal ions/anions and NPPs displayed high selectivity with CN anion (LOD = 20.42 nM) through fluorescence "turn-Off" response and a naked-eye sensitive visible color change.
View Article and Find Full Text PDFArch Biochem Biophys
September 2025
Department of Chemistry and Biochemistry, Howard College of Arts and Sciences, Samford University, 800 Lakeshore Drive, Birmingham, AL, USA, 35229. Electronic address:
Tetrahydrodipicolinate N-succinyltransferase (DapD) catalyzes the reaction of tetrahydrodipicolinate (THDP) and succinyl-CoA to form (S)-2-(3-carboxypropanamido)-6-oxoheptanedioic acid and coenzyme A. The enzyme is in the diaminopimelate-lysine biosynthesis pathway which produces two metabolites necessary for the survival and growth of pathogenic bacteria. Since lysine is an essential amino acid to humans, DapD is a potentially safe target for antibiotic therapies.
View Article and Find Full Text PDFEnviron Res
September 2025
Center for High Technology Development, Nguyen Tat Thanh University, Ho Chi Minh City Hi-Tech Park, Ho Chi Minh City, Vietnam; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam. Electronic address:
The development of novel multijunction heterostructure photocatalysts is critical for the efficient degradation of organic pollutants, attributed to their ability to enhance the separation of photogenerated electron-hole pairs. In our study, a ternary composite, melem/BiVO/g-CN (BVO/CNMH), was synthesized via an acid-soaking method followed by calcination, using g-CN as a sacrificial precursor in the presence of BiVO. This approach yielded a porous, interconnected architecture in BVO/CNMH.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
A novel vacuum ultraviolet (VUV)-activated sodium percarbonate (SPC) system (VUV/SPC) was developed for efficient degradation of micropollutants such as phenol. The VUV/SPC system achieved 98.4 % phenol removal within 3 min, with pseudo-first-order rate constants 4.
View Article and Find Full Text PDF