Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hyperlipidemia (HLP) is a lipid metabolism disorder that can induce a series of cardiovascular and cerebrovascular diseases, such as atherosclerosis, myocardial infarction, coronary heart disease, and stroke, which seriously threaten human health. Tetrahydropalmatine (THP) is a component of the plant and has been shown to exert hepatoprotective and anti-inflammatory effects in HLP. However, whether THP regulates lipid peroxidation in hyperlipidemia, endoplasmic reticulum (ER) stress and inflammasome activation and even the underlying protective mechanism against HLP remain unclear. An animal model of HLP was established by feeding a high-fat diet to golden hamsters. Our results showed that THP reduced the body weight and adipose index; decreased the serum content of ALT, AST, TC, TG, and LDL-C; decreased the free fatty acid hepatic lipid content (liver index, TC, TG, and free fatty acid); inhibited oxidative stress and lipid peroxidation; extenuated hepatic steatosis; and inhibited ER stress and inflammasome activation in high-fat diet-fed golden hamsters. In addition, for the first time, the potential mechanism by which THP protects against HLP through the TLR4-NF-B signaling pathway was demonstrated. In conclusion, these data indicate that THP attenuates HLP through a variety of effects, including antioxidative stress, anti-ER stress, and anti-inflammatory effects. In addition, THP also inhibited the TLR4-NF-B signaling pathway in golden hamsters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575622PMC
http://dx.doi.org/10.1155/2021/6614985DOI Listing

Publication Analysis

Top Keywords

lipid peroxidation
12
stress inflammasome
12
inflammasome activation
12
golden hamsters
12
endoplasmic reticulum
8
reticulum stress
8
anti-inflammatory effects
8
free fatty
8
fatty acid
8
tlr4-nf-b signaling
8

Similar Publications

Tuberculosis, caused by , persists as a significant worldwide health issue, resulting in millions of infections and fatalities each year. Treatment predominantly depends on first-line antibiotics, including Isoniazid (INH) and Rifampicin (RIF). Nevertheless, extended use of these medications is linked to considerable adverse effects, leading to various organ toxicities, especially hepatotoxicity and nephrotoxicity.

View Article and Find Full Text PDF

[β-sitosterol, an important component in the fruits of Miq., prolongs lifespan of by suppressing the ferroptosis pathway].

Nan Fang Yi Ke Da Xue Xue Bao

August 2025

Department of Pathogenic Biology & Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University. Haikou 571199, China.

Objectives: To elucidate the anti-aging effect of β-sitosterol (BS), an important component in the fruits of Miq., in and its regulatory effect on ETS-5 gene to modulate ferroptosis.

Methods: treated with 10 µg/mL BS were monitored for survival time and changes in body length, motility, and reproductive function.

View Article and Find Full Text PDF

Background: Microglia are brain resident cells that control neural network maintenance, damage healing, and brain development. Microglia undergo apoptosis, cytokine production, and reactive free radicals of oxygen (ROS) in response to lipopolysaccharide (LPS) stimulation. TRPM2 is activated by LPS-induced oxidative stress, but it is inhibited by carvacrol (CARV) and N-(p-amylcinnamoyl)anthranilic acid (ACA).

View Article and Find Full Text PDF

The antipsychotic chlorpromazine induces oxidative stress in endothelial cells: an in vitro assessment employing Fourier-transform infrared spectroscopy.

Biochem Biophys Res Commun

September 2025

Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Mexico. Electronic address:

Chlorpromazine (CPZ) is a first-generation antipsychotic that has been widely used to treat an array of neurological conditions, including schizophrenia, bipolar disorder, and anxiety. Treatment of these chronic conditions with CPZ has been linked to elevated levels of reactive oxygen species (ROS), and accumulating evidence supports a link between ROS and chronic and degenerative pathologies, including cardiovascular diseases. Therefore, the aim of this study was to observe the presence of oxidative stress in porcine aortic endothelial cells (PAE) exposed to different concentrations of CPZ in vitro.

View Article and Find Full Text PDF

Multi-Enzymatic Cascade Catalysis in Photodynamic Nanozymes for Augmenting Radiotherapy of Breast Cancer.

Adv Healthc Mater

September 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.

Overcoming resistance to radiotherapy remains a significant challenge in breast cancer management. A one-step coordinated synthesis of BODIPY-integrated photodynamic nanozymes (FZBNPs) that facilitate an orthogonal catalytic cascade for radiotherapy potentiation is presented. The engineered FZBNPs simultaneously alleviate tumor hypoxia through catalase-mimetic oxygen (O) generation and amplify reactive oxygen species (ROS) production via peroxidase-like activity, synergizing with BODIPY-mediated singlet oxygen (O) generation under 660 nm light irradiation.

View Article and Find Full Text PDF