Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Kimchi is a traditional Korean food, of which its constituent lactic acid bacteria have been reported to possess various physiological activities. However, few studies have investigated the immunological activity of these bacteria or their effect on atopic dermatitis (AD). We investigated whether a mixture of 6 types of lactic acid bacteria strains (LBS) isolated from kimchi has an immunomodulating effect on atopy. Mice with atopic dermatitis were orally administered LSB from kimchi for 8 weeks, and skin moisture content, scratching behavior, T-and B-cell proliferation, Th1/2 cytokines, and serum IgE and histamine levels were measured. In addition, hematoxylin and eosin and toluidine blue staining were con-ducted. Mice receiving LBS from kimchi had increased skin moisture content (164.3%) and T-cell proliferation (more than 4-fold), and decreased number of scratching behaviors (78.2%) and B-cell proliferation (63.7%) compared with the 2,4-dinitrochlorobenzene control group. In addition, LBS increased Th1 type cytokines, decreased Th2 type and pro-inflam-matory cytokines, and decreased blood IgE (70.4%), histamine (67.6%) and mast cell levels. Therefore, it suggests that LBS of kimchi may be helpful in improving AD caused by immunological imbalance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531426PMC
http://dx.doi.org/10.3746/pnf.2021.26.3.321DOI Listing

Publication Analysis

Top Keywords

lactic acid
12
atopic dermatitis
12
isolated kimchi
8
acid bacteria
8
skin moisture
8
moisture content
8
b-cell proliferation
8
lbs kimchi
8
cytokines decreased
8
kimchi
6

Similar Publications

Introduction: Lactate has emerged as a multifunctional signaling molecule regulating various physiological and pathological processes. Furthermore, lactylation, a newly identified posttranslational modification triggered by lactate accumulation, plays significant roles in human health and diseases. This study aims to investigate the roles of lactate/lactylation in respiratory diseases.

View Article and Find Full Text PDF

Electroactive bacteria (EAB) hold great promise for the development of electrochemical biosensors given their unique ability to transfer electrons extracellularly via specialized pathways, a process termed extracellular electron transfer (EET). Ongoing research aims to overcome current limitations and fully harness the potential of EABs for high-performance biosensing applications. Herein, we report the fabrication of an electrochemical microsensor based on biomineralized electroactive bacteria, specifically MR-1.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.

View Article and Find Full Text PDF

Introduction: Fermented buffalo milk products from South Asia remain an underexplored source of microbial diversity with potential health-promoting benefits. This study investigates the probiotic and industrial suitability of lactic acid bacteria (LAB) and non-LAB isolates from traditional Pakistani dairy, addressing gaps in region-specific probiotic discovery.

Methods: Forty-seven bacterial isolates were obtained from fermented buffalo milk products (yogurt and cheese).

View Article and Find Full Text PDF

SLC16A3 (MCT4) expression in tumor immunity and Metabolism: Insights from pan-cancer analysis.

Biochem Biophys Rep

June 2025

The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China.

Background: SLC16A3, a highly expressed H + -coupled symporter, facilitates lactate transport via monocarboxylate transporters (MCTs), contributing to acidosis. Although SLC16A3 has been implicated in tumor development, its role in tumor immunity remains unclear.

Methods: A pan-cancer analysis was conducted using datasets from The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, and Genotype-Tissue Expression projects.

View Article and Find Full Text PDF