98%
921
2 minutes
20
We have previously reported an important role of PR55α, a regulatory subunit of PP2A Ser/Thr phosphatase, in the support of critical oncogenic pathways required for oncogenesis and the malignant phenotype of pancreatic cancer. The studies in this report reveal a novel mechanism by which the p53 tumor suppressor inhibits the protein-stability of PR55α via FBXL20, a p53-target gene that serves as a substrate recognition component of the SCF (Skp1_Cullin1_F-box) E3 ubiquitin ligase complex that promotes proteasomal degradation of its targeted proteins. Our studies show that inactivation of p53 by siRNA-knockdown, gene-deletion, HPV-E6-mediated degradation, or expression of the loss-of-function mutant p53 results in increased PR55α protein stability, which is accompanied by reduced protein expression of FBXL20 and decreased ubiquitination of PR55α. Subsequent studies demonstrate that knockdown of FBXL20 by siRNA mimics p53 deficiency, reducing PR55α ubiquitination and increasing PR55α protein stability. Functional tests indicate that ectopic p53 or PR55α expression results in an increase of c-Myc protein stability with concomitant dephosphorylation of c-Myc-T58, which is a PR55α substrate, whose phosphorylation otherwise promotes c-Myc degradation. A significant increase in anchorage-independent proliferation is also observed in normal human pancreatic cells expressing p53 or, to a greater extent, overexpressing PR55α. Consistent with the common loss of p53 function in pancreatic cancer, FBXL20 mRNA expression is significantly lower in pancreatic cancer tissues compared to pancreatic normal tissues and low FBXL20 levels correlate with poor patient survival. Collectively, these studies delineate a novel mechanism by which the p53/FBXL20 axis negatively regulates PR55α protein stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570931 | PMC |
http://dx.doi.org/10.1016/j.neo.2021.10.002 | DOI Listing |
J Mater Chem B
September 2025
Major in Bionano Engineering, School of Bio-Pharmaceutical Convergence, Hanyang University, Ansan, 155-88, Republic of Korea.
Membrane proteins are essential bio-macromolecules involved in numerous critical biological processes and serve as therapeutic targets for a wide range of modern pharmaceuticals. Small amphipathic molecules, called detergents or surfactants, are widely used for the isolation and structural characterization of these proteins. A key requirement for such studies is their ability to maintain membrane protein stability in aqueous solution, a task where conventional detergents often fall short.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Centre of Molecular and Environmental Biology (CBMA), Department of Biology, School of Sciences of the University of Minho, Braga, Portugal.
The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.
View Article and Find Full Text PDFBiotechniques
September 2025
Woman, Mother + Baby Research Institute, Tufts Medicine, Boston, MA, USA.
MicroRNAs (miRNAs) are considered more stable than mRNA, but the impact of progressive thawing of biological samples after freezing as may happen during shipping delays has not been quantified. To address this, we utilized digital PCR to estimate the absolute concentrations of select miRNAs following progressive thawing of human plasma and maintenance at ambient temperature. Specifically, we quantified let-7b-3p, miR-144-5p, miR-150-5p, miR-517a-3p, miR-524-5p, and miR-1283, which have varying abundance in plasma.
View Article and Find Full Text PDFElectrophoresis
September 2025
Therapeutics Development and Supply-Analytical Development, Janssen Research & Development, LLC, Malvern, Pennsylvania, USA.
Monoclonal antibodies (mAbs) present analytical challenges due to their inherent heterogeneity and susceptibility to post-translational modifications (PTMs) during production and storage. Monitoring of charge heterogeneity profiles by imaged capillary isoelectric focusing (icIEF) has been aided by the use of non-detergent sulfobetaines (NDSBs), particularly NDSB-211, to enhance protein solubility and stability. When used in a quality control laboratory setting, NDSB-211 has shown performance variability over time due to residual manufacturing impurities that impact the capillary isoelectric focusing separation.
View Article and Find Full Text PDF