98%
921
2 minutes
20
Plants are frequently exposed to prolonged and intense drought events. To survive, species must implement strategies to overcome progressive drought while maintaining sufficient resources to sustain the recovery of functions. Our objective was to understand how stress rate development modulates energy reserves and affects the recovery process. Grenache Vitis vinifera cultivar was exposed to either fast-developing drought (within few days; FDD), typical of pot experiments, or slow-developing drought (few weeks, SDD), more typical for natural conditions. FDD was characterized by fast (2-3 days) stomatal closure in response to increased stress level, high abscisic acid (ABA) accumulation in xylem sap (>400 μg L ) without the substantial changes associated with stem priming for recovery (no accumulation of sugar or drop in xylem sap pH). In contrast, SDD was characterized by gradual stomatal closure, low ABA accumulation (<100 μg L ) and changes that primed the stem for recovery (xylem sap acidification from 6 to 5.5 pH and sugar accumulation from 1 to 3 g L ). Despite FDD and SDD demonstrating similar trends over time in the recovery of stomatal conductance, they differed in their sensitivity to xylem ABA. Grenache showed near-isohydric and near-anisohydric behavior depending on the rate of drought progression, gauging the risk between hydraulic integrity and photosynthetic gain. The isohydry observed during FDD could potentially provide protection from large sudden swings in tension, while transitioning to anisohydry during SDD could prioritize the maintenance of photosynthetic activity over hydraulic security.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299143 | PMC |
http://dx.doi.org/10.1111/ppl.13590 | DOI Listing |
J Agric Food Chem
September 2025
Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China.
This study investigated the effects of a low-frequency polarized electric field (LFPEF) on postharvest disease resistance and storage quality of grapes. LFPEF treatment (3 h/d) significantly reduced weight loss, suppressed lesion expansion, and maintained fruit firmness by reinforcing cell wall integrity and enhancing defense-related enzyme activities. Mechanistic analyses indicated that LFPEF activated Ca signaling, promoted calcium accumulation, and upregulated calcium sensor genes, thereby contributing to membrane stabilization.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; Interdepartmental Centre for Grapevines and Wine Sciences, University of Turin, Corso Enotria 2/C, 12051 Alba, Italy. Electronic address:
Microorganisms colonizing grapevines possess diverse functional capabilities that influence the health, growth, productivity and, consequently, wine quality. In this study, spatial and temporal dynamics of the microbiome of Vitis vinifera cv. Barbera grapevine were determined by shotgun sequencing.
View Article and Find Full Text PDFSci Total Environ
September 2025
Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, PB.901, 2050, Hammam-Lif, Tunisia. Electronic address:
Climate change is challenging agriculture and food security due to the limited adaptability of domesticated crops. While plant range shifts along latitudinal and altitudinal gradients are well-documented, their impacts on belowground microbial communities and plant adaptability remain poorly understood. Vitis vinifera subsp.
View Article and Find Full Text PDFCell Mol Life Sci
September 2025
Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China.
Microglial activation-induced neuroinflammation and impaired neuronal mitophagy are recognized as pivotal pathogeneses in Parkinson's disease (PD). However, the role of microglial mitophagy in microglial activation during PD development remains unclear, and therapeutic interventions targeting this interaction are lacking. Rhapontigenin (Rhap), a stilbenoid enriched in Vitis vinifera, exhibits dual anti-neuroinflammatory and mitophagy-enhancing properties, but its therapeutic potential and mechanisms in PD are unexplored.
View Article and Find Full Text PDFPlant Dis
September 2025
Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China;
Grape white rot, caused by Coniella vitis, is a devastating disease that affects grape production in China and worldwide, resulting in substantial yield and quality losses. Early and accurate detection of C. vitis is critical for effective disease management.
View Article and Find Full Text PDF