Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study explored the fundamental chemical intricacies behind the interactions between metal catalysts and carbon supports with graphitic nitrogen defects. These interactions were probed by examining metal adsorption, specifically, the location of adsorption and the electronic structure of metal catalysts as the basis for the metal-support interactions (MSIs). A computational framework was developed, and a series of 12 transition metals was systematically studied over various graphene models with graphitic nitrogen defect(s). Different modeling approaches served to provide insights into previous MSI computational discrepancies, reviewing both truncated and periodic graphene models. The computational treatment affected the magnitudes of adsorption energies between the metals and support; however, metals generally followed the same trends in their MSI. It was found that the addition of the nitrogen dopant improved the MSI by promoting electronic rearrangement from the metals' d- to s-orbitals for greater orbital overlap with the carbon support, shown with increased favorable adsorption. Furthermore, the study observed periodic trends that were adept descriptors of the MSI fundamental chemistries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552480PMC
http://dx.doi.org/10.1021/acsomega.1c04306DOI Listing

Publication Analysis

Top Keywords

metal catalysts
12
graphitic nitrogen
12
nitrogen defects
12
periodic trends
8
graphene models
8
trends stability
4
metal
4
stability metal
4
catalysts supported
4
supported graphene
4

Similar Publications

The surface structure of an electrocatalyst plays a crucial role in determining the activity. As a model system, gold has been widely investigated as an electro-oxidation catalyst, although there has been much less research on the oxygen evolution reaction (OER) in the potential region of gold oxidation. Here, we combine voltammetric scanning electrochemical cell microscopy (SECCM) and electron backscatter diffraction (EBSD), at different spatial and angular resolutions, respectively, to correlate the local crystallographic structure of polycrystalline goldfocusing on grains close to (113), (011), (114), and (111) orientationswith the electrocatalytic behavior for the OER.

View Article and Find Full Text PDF

The sustainable synthesis of bio-based monomers from renewable biomass intermediates is a central goal in green chemistry and biorefinery innovation. This study introduces a synergistic catalytic-enzymatic strategy for the efficient and eco-friendly oxidation of 5-hydroxymethylfurfural (5-HMF) into 2,5-furandicarboxylic acid (FDCA), a key monomer for next-generation biodegradable plastics. The catalytic phase employed non-noble metal catalysts, MnO and Co-Mn supported on activated carbon (Co-Mn/AC), under mild batch reaction conditions at 90 °C.

View Article and Find Full Text PDF

Reducing agents with phosphorus-hydrogen bond, such as sodium hypophosphite, phosphite, and hypophosphorous acid are commercially available in bulk amounts, however, their usage is understudied in organic processes. While NaHPO has proved to be an efficient four-electron reductant in the catalyst-free reductive amination, the influence of cation in hypophosphite salt has not been studied yet. This issue is a fundamentally important factor.

View Article and Find Full Text PDF

High-entropy metal phosphide nanoparticles for accelerated lithium polysulfide conversion.

Chem Sci

September 2025

School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University Nanning 530004 P. R. China

To overcome the persistent challenges of sluggish lithium polysulfide (LiPS) conversion kinetics and the shuttle effect in Li-S batteries, this work introduces a novel, cost-effective thermal treatment strategy for synthesizing high-entropy metal phosphide catalysts using cation-bonded phosphate resins. For the first time, we successfully fabricated single-phase high-entropy FeCoNiCuMnP nanoparticles anchored on a porous carbon network (HEP/C). HEP/C demonstrates enhanced electronic conductivity and superior LiPS adsorption capability, substantially accelerating its redox kinetics.

View Article and Find Full Text PDF

The electron-deficient oxidant 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) has recently emerged as a promising visible-light photoredox catalyst. However, its excited-state behavior remains poorly understood. Here, we investigate the ultrafast dynamics of photoexcited DDQ in acetonitrile using transient electronic and infrared absorption spectroscopy, supported by quantum chemical calculations.

View Article and Find Full Text PDF