98%
921
2 minutes
20
Restoring dexterous hand control is critical for people with paralysis. Approaches based on surface or intramuscular stimulation provide limited finger control, generate insufficient force to recover functional movements, and require numerous electrodes. Here, we show that intrafascicular peripheral electrodes could produce functional grasps and sustained forces in three monkeys. We designed an intrafascicular implantable electrode targeting the motor fibers of the median and radial nerves. Our interface selectively and reliably activated extrinsic and intrinsic hand muscles, generating multiple functional grips, hand opening, and sustained contraction forces for up to 2 months. We extended those results to a behaving monkey with transient hand paralysis and used intracortical signals to control simple stimulation protocols that enabled this animal to perform a functional grasping task. Our findings show that just two intrafascicular electrodes can generate a rich portfolio of dexterous and functional hand movements with important implications for clinical applicability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scitranslmed.abg6463 | DOI Listing |
iScience
May 2025
The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy.
Unmyelinated fibers account for a remarkable fraction of the peripheral nervous system and their activity is linked to many autonomic and somatic functions. While electrical recording of such activity from human-sized peripheral nerves holds significant potential for neuroengineering applications, it has been shown only in acute settings via microneurography. This leaves unclear whether current implantable electrodes could achieve the same outcome.
View Article and Find Full Text PDFJ Neural Eng
April 2025
ETIS Lab, UMR 8051, CY Cergy Paris University, ENSEA, Cergy, France.
Electrical stimulation of peripheral nerves is used to treat a variety of disorders and conditions. While conventional biphasic pulse stimulation typically induces neural activity in fibers, kilohertz (kHz) continuous stimulation can block neural conduction, offering a promising alternative to drug-based therapies for alleviating abnormal neural activity. This study explores strategies to enhance the selectivity and control of high-frequency neural conduction block using intrafascicular electrodes.
View Article and Find Full Text PDFBMJ Neurol Open
January 2025
Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan.
Objective: This study investigated the effects of early treatment and pathophysiology on eosinophilic granulomatosis with polyangiitis neuropathy (EGPA-N).
Methods: Twenty-six consecutive patients with EGPA-N were diagnosed and treated within a day of admission and underwent clinical analysis. Peripheral nerve recovery rates were evaluated after early treatment by identifying the damaged peripheral nerve through detailed neurological findings.
Br J Anaesth
February 2025
Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA; CEU-San-Pablo University School of Medicine, Madrid, Spain; Department of Anesthesiology, Madrid-Montepríncipe University Hospital, Madrid, Spain. Electronic address:
Background: We investigated the intraneural spread of injected fluid in brachial plexus nerve roots, examining the potential for intrafascicular spread and identifying influencing factors.
Methods: Twelve deliberate ultrasound-guided intraneural injections were performed at the ventral rami of the brachial plexus nerve roots at their exits from the neuroforamina in six fresh, unembalmed, cryopreserved human cadavers. A 22-G, 30-degree bevel echogenic regional anaesthesia needle was used.
Aesthet Surg J
January 2025
Background: Deoxycholic acid (ATX-101) is a drug administered by subcutaneous injection for local fat reduction. However, ATX-101 treatment has been reported to cause marginal mandibular nerve injury with noticeable functional deficits when targeting submental fat. As a cytolytic agent with some selectivity for adipocytes, ATX-101 may damage the lipid-rich myelin surrounding peripheral nerves.
View Article and Find Full Text PDF