98%
921
2 minutes
20
Small cell lung cancer (SCLC) is an aggressive neuroendocrine cancer characterized by loss of function TP53 and RB1 mutations in addition to mutations in other oncogenes including MYC. Overexpression of MYC together with Trp53 and Rb1 loss in pulmonary neuroendocrine cells of the mouse lung drives an aggressive neuroendocrine low variant subtype of SCLC. However, the transforming potential of MYC amplification alone on airway epithelium is unclear. Therefore, we selectively and conditionally overexpressed MYC stochastically throughout the airway or specifically in neuroendocrine, club, or alveolar type II cells in the adult mouse lung. We observed that MYC overexpression induced carcinoma in situ which did not progress to invasive disease. The formation of adenoma or SCLC carcinoma in situ was dependent on the cell of origin. In contrast, MYC overexpression combined with conditional deletion of both Trp53 and Rb1 exclusively gave rise to SCLC, irrespective of the cell lineage of origin. However, cell of origin influenced disease latency, metastatic potential, and the transcriptional profile of the SCLC phenotype. Together this reveals that MYC overexpression alone provides a proliferative advantage but when combined with deletion of Trp53 and Rb1 it facilitates the formation of aggressive SCLC from multiple cell lineages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41388-021-02070-3 | DOI Listing |
Cell Signal
September 2025
Departments of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA. Electronic address:
Mature mRNAs are generated by spliceosomes that recruit factors to aid RNA splicing in which introns are removed and exons joined. Among the splicing factors, a family of proteins contain a homologous U2 Auxiliary Factor (U2AF) Homology Motif (UHM) to bind with factors containing U2AF ligand motifs (ULM) and recruit them to regulate 3' splice site selection. Mutations and overexpression of UHM splicing factors are frequently found in cancers.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Resea
TP53 mutations are highly associated with hepatocellular carcinoma (HCC), a common and deadly cancer. However, few primary drivers in the progression of HCC with mutant TP53 have been identified. To uncover tumor suppressors in human HCC, a genome-wide CRISPR/Cas9-based screening of primary human hepatocytes with MYC and TP53 overexpression (MT-PHHs) is performed in xenografts.
View Article and Find Full Text PDFFront Oncol
August 2025
Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Snai2 is a transcription factor that inhibits the proliferation of cervical cancer cells and tumor growth. The expression of Snai2 inhibited the expression of β-catenin and impaired Wnt/β-catenin signaling pathway activity. The results of the RNA sequence in Snai2-overexpressing cervical cancer cells implied a strong correlation between Snai2 and TRIM31 with ubiquitin ligase activity.
View Article and Find Full Text PDFiScience
September 2025
Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Hessen, Germany.
Efforts to efficiently target brain tumors are constrained by the dearth of appropriate models to study tumor behavior toward treatment approaches as well as potential side effects to the surrounding normal tissue. We established a reproducible cerebral organoid model of brain tumorigenesis in an autologous setting by overexpressing , a common oncogene in brain tumors. GFP/c-MYC cells were isolated from tumor organoids and used in two different approaches: GFP/c-MYC cells co-cultured with cerebral organoid slices or fused as spheres to whole organoids.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia Hui Autonomous Region, China.
Background: Mediator complex subunit 10 (MED10) serves as a critical regulator of eukaryotic gene expression by facilitating RNA polymerase II activity. Our investigation aims to characterize MED10's functional contributions and underlying molecular pathways in hepatocellular carcinoma (HCC) development.
Methods: MED10 expression patterns in HCC and their correlation with clinicopathological parameters and patient outcomes were examined using bioinformatics databases and immunohistochemistry.