Regulating Water Reduction Kinetics on MoP Electrocatalysts Through Se Doping for Accelerated Alkaline Hydrogen Production.

Front Chem

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Owing to its low cost, high conductivity, and chemical stability, Molybdenum phosphide (MoP) has great potential for electrochemically catalyzing the hydrogen evolution reaction (HER). Unfortunately, the development of high-activity MoP still remains a grand challenge in alkali-electrolyzers due to its sluggish water reduction kinetics. Here, we demonstrate a novel strategy for regulating the HER kinetics of the MoP nanowire cathode through partially substituting P atoms with Se dopants. In alkaline solutions, the Se-doped MoP (Se-MoP) nanowire cathode exhibits excellent HER performance with a greatly-decreased overpotential of ∼61 mV at 10 mA cm and a Tafel slope of ∼63 mV dec, outperforming currently reported MoP-based electrocatalysts. Experimental and theoretical investigations reveal that Se doping not only facilitates the water dissociation on MoP, but also optimize the hydrogen adsorption free energy, eventually speeding up the sluggish alkaline HER kinetics. Therefore, this work paves a new path for designing MoP-based electrocatalyst with high HER performance in alkaline electrolyzers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517518PMC
http://dx.doi.org/10.3389/fchem.2021.737495DOI Listing

Publication Analysis

Top Keywords

water reduction
8
reduction kinetics
8
kinetics mop
8
nanowire cathode
8
mop
6
regulating water
4
kinetics
4
mop electrocatalysts
4
electrocatalysts doping
4
doping accelerated
4

Similar Publications

Simultaneous sensing and quantification of pharmaceutically active compounds (PhACs) are crucial for protecting the environment and maintaining long-term ecological sustainability. This study focuses on the bio-based synthesis of BiS-ZnO nanocomposites (BiS-ZnO(bio)) using bio-extract for dual-analyte selective and simultaneous electrochemical monitoring of phenylbutazone (PBZ) and sulfamethoxazole (SMZ) in the environmental matrices. BiS-ZnO(bio) exhibited ZnO(bio) nanostructures embedded on BiS(bio) nanorods with an average rod length of 1409.

View Article and Find Full Text PDF

Designing sustainable Flood Control Systems (FCSs) requires considering both the resiliency of the system and the long-term viability of investments. In this regard, our research aimed at integrating concepts of hydrological resiliency and cost-benefit analysis to design the most effective flood control network. To do so, first, the Storm Water Management Model (SWMM) was developed for simulating flood condition.

View Article and Find Full Text PDF

Immunostimulatory and Immunomodulatory Effects of Vitamin B12 Derivatives on Macrophages Through the Modulation of JNK Pathway.

Cell Biochem Biophys

September 2025

Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34003, Türkiye, Turkey.

Vitamin B12 is a vital water-soluble vitamin containing a central cobalt atom within its corrin ring structure. It exists in several derivatives, among which methylcobalamin (MeCbl) and adenosylcobalamin (AdCbl) are the biologically active forms that serve as cofactors in essential enzymatic reactions. Although the neurological and hematological consequences of vitamin B12 deficiency have been extensively studied, its role in immune regulation remains less well understood.

View Article and Find Full Text PDF

Hydrothermal-based Wastewater Solids Management for Targeted Resource Recovery and Decarbonization in the Contiguous U.S.

Environ Sci Technol

September 2025

The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.

Wastewater solids management is a key contributor to the operational cost and greenhouse gas (GHG) emissions of water resource recovery facilities (WRRFs). This study proposes a 'waste-to-energy' strategy using a hydrothermal liquefaction (HTL)-based system to displace conventional energy- and emission-intensive practices. The proposed system directs HTL-produced biocrude to oil refineries and recovers regionally tailored nitrogen and phosphorus fertilizers.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the effects of repeated exposure to sevoflurane as an anesthetic agent during various developmental stages, namely neonatal, preadolescent, and adult, on behavioral, synaptic, and neuronal plasticity in male and female Wistar rats.

Methods: Rats were exposed to sevoflurane during three developmental stages: neonatal (PN7), pre-adolescence (PN28), and adulthood (PN90). Behavioral performance was evaluated with the Morris Water Maze.

View Article and Find Full Text PDF