Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the last years, the widespread use of the prostate-specific antigen (PSA) blood examination to triage patients who will enter the diagnostic/therapeutic path for prostate cancer (PCa) has almost halved PCa-specific mortality. As a counterpart, millions of men with clinically insignificant cancer not destined to cause death are treated, with no beneficial impact on overall survival. Therefore, there is a compelling need to develop tools that can help in stratifying patients according to their risk, to support physicians in the selection of the most appropriate treatment option for each individual patient. The aim of this study was to develop and validate on multivendor data a fully automated computer-aided diagnosis (CAD) system to detect and characterize PCas according to their aggressiveness. We propose a CAD system based on artificial intelligence algorithms that a) registers all images coming from different MRI sequences, b) provides candidates suspicious to be tumor, and c) provides an aggressiveness score of each candidate based on the results of a support vector machine classifier fed with radiomics features. The dataset was composed of 131 patients (149 tumors) from two different institutions that were divided in a training set, a narrow validation set, and an external validation set. The algorithm reached an area under the receiver operating characteristic (ROC) curve in distinguishing between low and high aggressive tumors of 0.96 and 0.81 on the training and validation sets, respectively. Moreover, when the output of the classifier was divided into three classes of risk, i.e., indolent, indeterminate, and aggressive, our method did not classify any aggressive tumor as indolent, meaning that, according to our score, all aggressive tumors would undergo treatment or further investigations. Our CAD performance is superior to that of previous studies and overcomes some of their limitations, such as the need to perform manual segmentation of the tumor or the fact that analysis is limited to single-center datasets. The results of this study are promising and could pave the way to a prediction tool for personalized decision making in patients harboring PCa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517452PMC
http://dx.doi.org/10.3389/fonc.2021.718155DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
system detect
8
detect characterize
8
prostate cancer
8
cad system
8
validation set
8
aggressive tumors
8
fully automatic
4
automatic artificial
4
intelligence system
4

Similar Publications

Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.

View Article and Find Full Text PDF

Background: As populations age, informal caregivers play an increasingly vital role in long-term care, with 80% of care provided by family members in Europe. However, many individuals do not immediately recognize themselves as caregivers, especially in the early stages. This lack of awareness can increase physical and emotional stress and delay access to support services.

View Article and Find Full Text PDF

Metagenomic analyses of microbial communities have unveiled a substantial level of interspecies and intraspecies genetic diversity by reconstructing metagenome-assembled genomes (MAGs). The MAG database (MAGdb) boasts an impressive collection of 74 representative research papers, spanning clinical, environmental, and animal categories and comprising 13,702 paired-end run accessions of metagenomic sequencing and 99,672 high quality MAGs with manually curated metadata. MAGdb provides a user-friendly interface that users can browse, search, and download MAGs and their corresponding metadata information.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.

View Article and Find Full Text PDF

The rapid evolution of digital tools in recent years after COVID-19 pandemic has transformed diagnostic and therapeutic practice in neurology. This shift has highlighted the urgent need to integrate digital competencies into the training of future specialists. Key innovations such as telemedicine, artificial intelligence, and wearable health technologies have become central to improving healthcare delivery and accessibility.

View Article and Find Full Text PDF