Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the regulatory mechanism by which cardiomyocyte proliferation transitions to endoreplication and cell cycle arrest during the neonatal period is crucial for identifying proproliferative factors and developing regenerative therapies. We used a transgenic mouse model based on the fluorescent ubiquitination-based cell cycle indicator (FUCCI) system to isolate and characterize cycling cardiomyocytes at different cell cycle stages at a single-cell resolution. Single-cell transcriptome analysis of cycling and noncycling cardiomyocytes was performed at postnatal days 0 (P0) and 7 (P7). The FUCCI system proved to be efficient for the identification of cycling cardiomyocytes with the highest mitotic activity at birth, followed by a gradual decline in the number of cycling and mitotic cardiomyocytes during the neonatal period. Cardiomyocytes showed premature cell cycle exit at G1/S shortly after birth and delayed G1/S progression during endoreplication at P7. Single-cell RNA-seq confirmed previously described signaling pathways involved in cardiomyocyte proliferation (Erbb2 and Hippo/YAP), and maturation-related transcriptional changes during postnatal development, including the metabolic switch from glycolysis to fatty acid oxidation in cardiomyocytes. Importantly, we generated transcriptional profiles specific to cell division and endoreplication in cardiomyocytes at different developmental stages that may facilitate the identification of genes important for adult cardiomyocyte proliferation and heart regeneration. In conclusion, the FUCCI mouse provides a valuable system to study cardiomyocyte cell cycle activity at single cell resolution that can help to decipher the switch from cardiomyocyte proliferation to endoreplication, and to revert this process to facilitate endogenous repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2021.112880DOI Listing

Publication Analysis

Top Keywords

cell cycle
24
cardiomyocyte proliferation
16
cell
8
cycle stages
8
cardiomyocytes
8
neonatal period
8
fucci system
8
cycling cardiomyocytes
8
cycle
6
cardiomyocyte
5

Similar Publications

Ultrathin Amorphous Iron Oxide Nanosheets for Improving the Electrochemical Performance of Li-S Batteries.

Langmuir

September 2025

Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.

The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.

View Article and Find Full Text PDF

Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.

View Article and Find Full Text PDF

Apicomplexan AP2 (ApiAP2) family proteins are a family of transcription factors that are known to regulate gene expression in apicomplexan pathogens, including . In this study, we focused on TgAP2X-7, a member of the APiAP2 family that is predicted to be essential for fitness. Endogenous tagging of TgAP2X-7 followed by immunofluorescence analysis revealed that it's a cell cycle-regulated nuclear protein with peak expression in the G1 phase.

View Article and Find Full Text PDF

DNA replication requires recruitment of Cdc45 and GINS into the MCM double hexamer by initiation factors to form an active helicase, the Cdc45-MCM-GINS (CMG) complex, at the replication origins. The initiation factor Sld3 is a central regulator of Cdc45 and GINS recruitment, working with Sld7 together. However, the mechanism through which Sld3 regulates CMG complex formation remains unclear.

View Article and Find Full Text PDF

Oxidative stress induces a wide range of cellular damage, often causing disease and cell death. While many organisms are susceptible to the effects of oxidative stress, haloarchaea have adapted to be highly resistant. Several aspects of the haloarchaeal oxidative stress response have been characterized; however, little is known about the impacts of oxidative stress at the translation level.

View Article and Find Full Text PDF