Genome-Wide DNA Methylation and Hydroxymethylation Changes Revealed Epigenetic Regulation of Neuromodulation and Myelination in Yak Hypothalamus.

Front Genet

State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China.

Published: September 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are important epigenetic modifications in neurodevelopment. However, there is little research examining the genome-wide patterns of 5mC and 5hmC in brain regions of animals under natural high-altitude conditions. We used oxidative reduced representation bisulfite sequencing (oxRRBS) to determine the 5mC and 5hmC sites in the brain, brainstem, cerebellum, and hypothalamus of yak and cattle. We reported the first map of genome-wide DNA methylation and hydroxymethylation in the brain, brainstem, cerebellum, and hypothalamus of yak (living at high altitudes) and cattle. Overall, we found striking differences in 5mC and 5hmC between the hypothalamus and other brain regions in both yak and cattle. Genome-wide profiling revealed that 5mC level decreased and 5hmC level increased in the hypothalamus than in other regions. Furthermore, we identified differentially methylated regions (DMRs) and differentially hydroxymethylated regions (DhMRs), most of which overlapped with each other. Interestingly, transcriptome results for these brain regions also showed distinctive gene levels in the hypothalamus. Finally, differentially expressed genes (DEGs) regulated by DMRs and DhMRs may play important roles in neuromodulation and myelination. Overall, our results suggested that mediation of 5mC and 5hmC on epigenetic regulation may broadly impact the development of hypothalamus and its biological functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8503545PMC
http://dx.doi.org/10.3389/fgene.2021.592135DOI Listing

Publication Analysis

Top Keywords

5mc 5hmc
16
brain regions
12
genome-wide dna
8
dna methylation
8
methylation hydroxymethylation
8
epigenetic regulation
8
neuromodulation myelination
8
5hmc epigenetic
8
brain brainstem
8
brainstem cerebellum
8

Similar Publications

Histone genes contain sequences responsible for coding five types of proteins (H1, H2A, H2B, H3, and H4) that are of great importance for chromatin organization. Their transcriptional regulation through DNA methylation has been little studied. Testudines are ancient reptiles with high cytogenetic diversity (2 = 26-68), with a large number of histone gene loci in their karyotype.

View Article and Find Full Text PDF

DNA demethylation is essential for gene activation and is primarily mediated by the Ten-Eleven-Translocation (TET) dioxygenase family. TET initiates the demethylation by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), a chemically stable derivative that is not only an intermediate in demethylation but also an epigenetic mark. 5hmC is enriched at active gene bodies, promoters, and enhancers that exist at accessible chromatin.

View Article and Find Full Text PDF

Mitochondrial DNA methylation: State-of-the-art in molecular mechanisms and disease implications.

J Adv Res

August 2025

Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of

Background: Mitochondrial DNA (mtDNA), a circular genome essential for cellular energy production, is increasingly recognized to exhibit aberrant methylation under pathological conditions. Dysregulated methylation in regulatory regions can impair mtDNA replication, transcription, and metabolic homeostasis, thereby promoting disease progression, including neurodegenerative diseases, cardiovascular diseases, metabolic disorders, as well as aging. Despite challenges posed by nuclear pseudogene interference, advanced detection technologies have significantly improved the resolution of mtDNA methylation analysis.

View Article and Find Full Text PDF

Genomic context-dependent roles of 5-hydroxymethylcytosine in regulating gene expression during rice drought response.

Plant J

August 2025

Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China.

DNA methylation (5-methylcytosine, 5mC) is a key epigenetic regulator of genome stability and stress adaptation in plants. However, the functional role of its oxidative derivative, 5-hydroxymethylcytosine (5hmC), remains poorly understood in plant systems, largely due to its low abundance and unresolved enzymatic origins. Here, we integrated ACE-seq (APOBEC-coupled epigenetic sequencing) with an optimized Tn5mC-seq (transposase-based library preparation in the context of whole-genome bisulfite sequencing, WGBS) approach to generate the first single-base resolution map of 5hmC in rice (Oryza sativa), unveiling its stress-responsive dynamics and regulatory interplay with 5mC during drought adaptation.

View Article and Find Full Text PDF

We present direct sequencing methodologies, scTAPS for 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) and scCAPS + specifically for 5hmC, enabling quantitative detection of 5mC and 5hmC at single-base resolution and single-cell level. Achieving approximately 90% mapping efficiency, our plate-based methods accurately recover 5mC and 5hmC profiles in CD8 + T and mouse embryonic stem cells. Notably, scCAPS + reveals a global increase in 5hmC across neuronal and non-neuronal cells in the hippocampus of aging mice.

View Article and Find Full Text PDF