Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Endothelial progenitor cells have shown the ability to enhance neovascularization. In this study, the authors tested whether intraosseous delivery of simvastatin could mobilize endothelial progenitor cells and enhance recovery in a hindlimb ischemia model.

Methods: There are eight groups of rats in this study: normal control; type 1 diabetes mellitus control group control without drug intervention; and type 1 diabetes mellitus rats that randomly received intraosseous simvastatin (0, 0.5, or 1 mg) or oral simvastatin administration (0, 20, or 400 mg). All type 1 diabetes mellitus rats had induced hindlimb ischemia. The number of endothelial progenitor cells in peripheral blood, and serum markers, were detected. The recovery of blood flow at 21 days after treatment was used as the main outcome.

Results: The authors demonstrated that endothelial progenitor cell mobilization was increased in the simvastatin 0.5- and 1-mg groups compared with the type 1 diabetes mellitus control and simvastatin 0-mg groups at 1, 2, and 3 weeks. Serum vascular endothelial growth factor levels were significantly increased at 2 weeks in the simvastatin 0.5- and 1-mg groups, in addition to the increase of the blood flow and the gastrocnemius weight at 3 weeks. Similar increase can also been seen in simvastatin 400 mg orally but not in simvastatin 20 mg orally.

Conclusion: These findings demonstrate that a single intraosseous administration of simvastatin mobilized endothelial progenitor cells at a dose one-hundredth of the required daily oral dose in rats, and this potent mobilization of endothelial progenitor cells markedly improved diabetic limb ischemia by means of neovascularization.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0000000000008526DOI Listing

Publication Analysis

Top Keywords

endothelial progenitor
28
progenitor cells
20
type diabetes
16
diabetes mellitus
16
hindlimb ischemia
12
simvastatin
10
single intraosseous
8
intraosseous simvastatin
8
endothelial
8
progenitor cell
8

Similar Publications

Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.

View Article and Find Full Text PDF

A FLOATING ENDOMETRIAL ORGANOID MODEL RECAPITULATES EPITHELIAL-STROMAL CELL INTERACTIONS IN VITRO.

Exp Cell Res

September 2025

Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132, Genova, Italy; IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy. Electronic address:

Organoids are 3D structures in which stem, progenitor and differentiated cells spontaneously assemble into structures resembling the original tissue. Endometrial organoids, developed from tissue fragments, are genetically stable and responsive to hormone stimulation acquiring a hallow lumen, secretory activity and apico-basal polarity. However, they show some limitations in mimicking the midluteal endometrium since they lack endothelial, immune, and stromal cells, thus providing limited information about epithelial-stromal interactions.

View Article and Find Full Text PDF

Purpose: Myocardial infarction (MI), the leading cause of human mortality, is induced by a sudden interruption of blood supply. Among various stem cell types, endothelial progenitor cells (EPCs) are novel and valid cell sources for the restoration of vascularization in the ischemic tissue. The present study aimed to evaluate the regenerative properties of EPCs in rodent models of MI.

View Article and Find Full Text PDF

If iPS cells can be established easily and efficiently using freshly collected blood cells, it will enhance regenerative and personalized medicine. While reports of iPS derivation from blood-derived endothelial progenitor cells using RNA have been documented, none have been reported from peripheral blood-derived mononuclear cells (PBMCs). In this study, we established a method to generate iPS cells from PBMCs using synthetic RNAs and found that MDM4, which suppresses p53, improved reprogramming efficiency.

View Article and Find Full Text PDF

Restraint of TGFβ family signaling by SMAD7 is necessary for hematopoietic stem cell maturation in the embryo.

bioRxiv

August 2025

Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

Hematopoietic stem cells (HSCs), defined as cells that can engraft an adult when transplanted, mature from precursors (pre-HSCs) that differentiate from hemogenic endothelial cells (HECs) in the embryo. Many signaling pathways required to generate the first hematopoietic stem and progenitor cells in the embryo are well-characterized, but how HSCs mature from pre-HSCs is poorly understood. Here we show that "mothers against decapentaplegic homolog 7" (SMAD7), a negative regulator of transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) signaling, is required for pre-HSC to HSC maturation.

View Article and Find Full Text PDF