98%
921
2 minutes
20
Reliable measures of cognitive brain activity from functional neuroimaging techniques may provide early indications of efficacy in clinical trials. Functional magnetic resonance imaging and electroencephalography provide complementary spatiotemporal information and simultaneous recording of these two modalities can remove inter-session drug response and environment variability. We sought to assess the effects of ketamine and midazolam on simultaneous electrophysiological and hemodynamic recordings during working memory (WM) processes. Thirty participants were included in a placebo-controlled, three-way crossover design with ketamine and midazolam. Compared to placebo, ketamine administration attenuated theta power increases and alpha power decreases and midazolam attenuated low beta band decreases to increasing WM load. Additionally, ketamine caused larger blood-oxygen-dependent (BOLD) signal increases in the supplementary motor area and angular gyrus, and weaker deactivations of the default mode network (DMN), whereas no difference was found between midazolam and placebo. Ketamine administration caused positive temporal correlations between frontal-midline theta (fm-theta) power and the BOLD signal to disappear and attenuated negative correlations. However, the relationship between fm-theta and the BOLD signal from DMN areas was maintained in some participants during ketamine administration, as increasing theta strength was associated with stronger BOLD signal reductions in these areas. The presence of, and ability to manipulate, both positive and negative associations between the BOLD signal and fm-theta suggest the presence of multiple fm-theta components involved in WM processes, with ketamine administration disrupting one or more of these theta-linked WM strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10548-021-00876-8 | DOI Listing |
Stroke
September 2025
Brain Language Laboratory, Freie Universität Berlin, Germany (A.-T.P.J., M.R.O., A.S., F.P.).
Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.
View Article and Find Full Text PDFComput Biol Med
September 2025
Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; School of Medical Sciences and Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine
Functional magnetic resonance imaging (fMRI) is a pivotal tool for mapping neuronal activity in the brain. Traditionally, the observed hemodynamic changes are assumed to reflect the activity of the most common neuronal type: excitatory neurons. In contrast, recent experiments, using optogenetic techniques, suggest that the fMRI-signal could reflect the activity of inhibitory interneurons.
View Article and Find Full Text PDFNat Aging
September 2025
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.
View Article and Find Full Text PDFMagn Reson Med
September 2025
A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
Since its introduction more than 30 years ago, the blood oxygenation level-dependent (BOLD) contrast remains the most widely used method for functional MRI (fMRI) in humans and animal models. The BOLD contrast is typically acquired with echo planar imaging (EPI) to obtain sensitization of the signal during the echo time (TE) to dynamic changes in deoxyhemoglobin content, while achieving high spatiotemporal resolution and full brain coverage. However, EPI-based fMRI also faces multiple shortcomings, including sensitivity to body motion, susceptibility-related signal dropouts, interference with multimodal sensors, and loud acoustic noise.
View Article and Find Full Text PDFMultivariate pattern analysis (MVPA) methods are a versatile tool to retrieve information from neurophysiological data obtained with functional magnetic resonance imaging (fMRI) techniques. Since fMRI is based on measuring the hemodynamic response following neural activation, the spatial specificity of the fMRI signal is inherently limited by contributions of macrovascular compartments that drain the signal from the actual location of neural activation, making it challenging to image cortical structures at the spatial scale of cortical columns and layers. By relying on information from multiple voxels, MVPA has shown promising results in retrieving information encoded in fine-grained spatial patterns.
View Article and Find Full Text PDF