Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multivariate pattern analysis (MVPA) methods are a versatile tool to retrieve information from neurophysiological data obtained with functional magnetic resonance imaging (fMRI) techniques. Since fMRI is based on measuring the hemodynamic response following neural activation, the spatial specificity of the fMRI signal is inherently limited by contributions of macrovascular compartments that drain the signal from the actual location of neural activation, making it challenging to image cortical structures at the spatial scale of cortical columns and layers. By relying on information from multiple voxels, MVPA has shown promising results in retrieving information encoded in fine-grained spatial patterns. We examined the spatial specificity of the signal exploited by MVPA. Over multiple sessions, we measured ocular dominance columns (ODCs) in human primary visual cortex (V1) with different acquisition techniques at 7 T. For measurements with blood oxygenation level dependent (BOLD) contrast, we included both gradient echo- (GE-BOLD) and spin echo-based (SE-BOLD) sequences. Furthermore, we acquired data using the vascular-space-occupancy (VASO) fMRI technique, which is sensitive to cerebral blood volume (CBV) changes. We used the data to decode eye-of-origin from signals across cortical layers. While ocularity information can be decoded with all imaging techniques, laminar profiles reveal that macrovascular contributions affect all acquisition methods, limiting their specificity across cortical depth. Therefore, although MVPA is a promising approach for investigating the mesoscopic circuitry of the human cerebral cortex, careful consideration of macrovascular contributions is needed that render the spatial specificity of the extracted signal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407697PMC
http://dx.doi.org/10.1101/2023.09.28.560016DOI Listing

Publication Analysis

Top Keywords

spatial specificity
12
cortical depth
8
neural activation
8
mvpa promising
8
macrovascular contributions
8
cortical
5
spatial
5
decoding columnar-level
4
columnar-level organization
4
organization cortical
4

Similar Publications

Forest loss, fragmentation, and transformation negatively impact forest biodiversity and ecosystem functionality worldwide. Improving landscape intactness and connectivity through restoration is critical. Determining where to restore remains, however, a challenge.

View Article and Find Full Text PDF

Atomic resolution scanning probe microscopy, and in particular scanning tunnelling microscopy (STM) allows for high-spatial-resolution imaging and also spectroscopic analysis of small organic molecules. However, preparation and characterisation of the probe apex in situ by a human operator is one of the major barriers to high-throughput experimentation and to reproducibility between experiments. Characterisation of the probe apex is usually accomplished via assessment of the imaging quality on the target molecule and also the characteristics of the scanning tunnelling spectra (STS) on clean metal surfaces.

View Article and Find Full Text PDF

Labeling the plasma membrane for advanced imaging remains a significant challenge. For time-lapse live cell imaging, probe internalization and photobleaching are major limitations affecting most membrane-specific dyes. In fixed or permeabilized cells, many membrane probes either lose signal after fixation or fail to remain localized to the plasma membrane.

View Article and Find Full Text PDF

Background: Functional and structural studies of the brain highlight the importance of white matter alterations in schizophrenia. However, molecular studies of the alterations associated with the disease remain insufficient.

Aim: To study the lipidome and transcriptome composition of the corpus callosum in schizophrenia, including analyzing a larger number of biochemical lipid compounds and their spatial distribution in brain sections, and corpus callosum transcriptome data.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder marked by impaired interactions and restricted interests, the pathophysiology of which is not fully understood. The current study explored the potential therapeutic effects of transcranial direct current stimulation (tDCS) on the neurophysiological aspects of ASD, specifically focusing on the brain's excitatory/inhibitory (E/I) balance and behavioral outcomes, providing scientific guidance for ASD intervention.

Methods: Forty-two children with ASD were randomly divided into either an active tDCS or sham tDCS group.

View Article and Find Full Text PDF