98%
921
2 minutes
20
Kainate receptors play fundamental roles in regulating synaptic transmission and plasticity in central nervous system and are regulated by their cognate auxiliary subunits Neuropilin and tolloid-like proteins 1 and 2 (Neto). While electrophysiology-based insights into functions of Neto proteins are known, biophysical and biochemical studies into Neto proteins have been largely missing till-date. Our biochemical, biophysical, and functional characterization of the purified extracellular domain (ECD) of Neto1 shows that Neto1-ECD exists as monomers in solution and has a micromolar affinity for GluK2 receptors in apo state or closed state. Remarkably, the affinity was ~2.8 fold lower for receptors trapped in the desensitized state, highlighting the conformation-dependent interaction of Neto proteins with kainate receptors. SAXS analysis of Neto1-ECD reveals that their dimensions are long enough to span the entire extracellular domain of kainate receptors. The shape and conformation of Neto1-ECD seems to be altered by calcium ions pointing towards its possible role in modulating Neto1 functions. Functional assays using GluK2 receptors and GluK2/GluA2 chimeric receptors reveal a differential role of Neto1 domains in modulating receptor functions. Although the desensitization rate was not affected by the Neto1-ECD, the recovery rates from the desensitized state are altered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.10.001 | DOI Listing |
Front Mol Neurosci
August 2025
Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.
Introduction: The potassium chloride co-transporter 2 (KCC2) is the principal Cl extrusion mechanism employed by mature neurons in the central nervous system (CNS) and plays a critical role in determining the efficacy of fast synaptic inhibition mediated by type A -aminobutyric acid receptors (GABARs) to protect against epileptogenesis. It has previously been demonstrated that epileptic seizures down-regulate KCC2 and induce neuronal apoptosis through the extrinsic apoptotic pathway. However, the mechanism by which neuronal death is induced by KCC2 loss remains unknown.
View Article and Find Full Text PDFFront Psychiatry
August 2025
Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States.
Introduction: The incubation of craving is a behavioral phenomenon in which cue-elicited craving increases during a period of drug abstinence. Incubated cocaine-craving is associated with increased extracellular glutamate within the medial prefrontal cortex (mPFC) and this release, particularly within the prelimbic (PL) subregion, is necessary for incubated cocaine-craving. A potential candidate mediating these incubation-driving effects of glutamate release within the PL are alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors.
View Article and Find Full Text PDFDis Aquat Organ
August 2025
Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA.
Domoic acid (DA) is a naturally occurring amino acid structurally analogous to kainic acid (KA). DA, a neurotoxin commonly associated with toxigenic Pseudo-nitzschia species, enters the food chain via filter feeders and poses a potential threat to predators such as sea stars. To assess the presence of DA, wild-collected sea stars (Pisaster ochraceus and Asterias spp.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
August 2025
Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
Kainate receptors (KARs), a subtype of ionotropic glutamate receptors, play critical roles in the brain by participating in fundamental functions such as synaptic plasticity. The abnormal expression, distribution, and function of KARs have been implicated in a range of neurological and psychiatric disorders, including epilepsy. This study aimed to provide a comprehensive bibliometric analysis of kainate receptor (KAR) research over the past five decades (1975-2024), mapping its evolution, identifying key trends and hotspots, and highlighting emerging frontiers.
View Article and Find Full Text PDFNat Struct Mol Biol
August 2025
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
Kainate receptors (KARs) are tetrameric, ligand-gated ion channels of the ionotropic glutamate receptor family that mediate excitatory neurotransmission and modulate neuronal circuits and synaptic plasticity during development of the central nervous system. KARs are implicated in psychiatric and neurological diseases and represent a target of therapeutic intervention. Native KARs form complexes with neuropilin and tolloid-like auxiliary subunits (Neto1 and Neto2), which modulate their function, trafficking and synaptic localization.
View Article and Find Full Text PDF