98%
921
2 minutes
20
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Early diagnosis is the key to treatment but is still a great challenge in the clinic now. The discovery of alpha-synuclein (α-syn) aggregates ligands has become an attractive strategy to meet the early diagnosis of PD. Herein, we designed and synthesized a series of styrylaniline derivatives as novel α-syn aggregates ligands. Several compounds displayed good potency to α-syn aggregates with K values less than 0.1 μM. The docking study revealed that the hydrogen bonds and cation-pi interaction between ligands and α-syn aggregates would be crucial for the activity. The representative compound 7-16 not only detected α-syn aggregates in both SH-SY5Y cells and brain tissues prepared from two kinds of α-syn preformed-fibrils-injected mice models but also showed good blood-brain barrier penetration characteristics in vivo with a brain/plasma ratio over 1.0, which demonstrates its potential as a lead compound for further development of in vivo imaging agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2021.113887 | DOI Listing |
J Phys Chem B
September 2025
Department of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Fysikgränd 3, Göteborg 41296, Sweden.
The detection of biological nanoparticles (NPs), such as viruses and extracellular vesicles (EVs), plays a critical role in medical diagnostics. However, these particles are optically faint, making microscopic detection in complex solutions challenging. Recent advancements have demonstrated that distinguishing between metallic and dielectric signals with twilight off-axis holographic microscopy makes it possible to differentiate between metal and biological NPs and to quantify complexes formed from metal and biological NPs binding together.
View Article and Find Full Text PDFPLoS One
September 2025
College of Landscape Architecture and Art, Northwest Agriculture and Forestry University, Xianyang, China.
This study investigates the spatial and temporal distribution and the influencing factors of 579 cultural heritage sites along the Qin-Shu Ancient Road in Shaanxi Province, employing kernel density estimation, buffer analysis, and geographic detectors. Three key findings emerge: (1) The spatial pattern is characterized by a "line-belt-core" structure, with a belt-like aggregation along the Xi'an-Baoji-Hanzhong axis. Core concentrations are found in Xi'an (181 sites), Hanzhong (159 sites), and Ankang (122 sites), with secondary concentrations in Baoji (72 sites) and Shangluo (36 sites).
View Article and Find Full Text PDFArterial thrombosis is a multifaceted process characterized by platelet aggregation and fibrin deposition, leading to the occlusion of blood vessels. It plays a central role in cardiovascular conditions such as myocardial infarction and ischemic stroke. Gaining insight into the mechanisms underlying arterial thrombosis is essential for developing effective treatments aimed at preventing thrombotic events and reducing associated health burdens.
View Article and Find Full Text PDFLangmuir
September 2025
School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
The study of the self-assembly of surfactants in aqueous solutions, though a traditional field, remains fascinating and full of novelty. In this article, the anionic perfluorodecanoic acid surfactant (PFA) is separately complexed with three hydroxyalkylamines (monoethanolamine (MEA), diethylamine (DEA), and triethanolamine (TEA)) in aqueous solutions. The transformation of aggregate morphologies from spherical unilamellar to nanotubes and then to spherical bilamellar is observed at room temperature, which is confirmed by cryo-transmission electron microscopy (cryo-TEM).
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong, 999077,
Breast cancer (BC), characterized by its heterogeneity and diverse subtypes, necessitates personalized treatment strategies. This study presents MF3Ec-TBPP nanoparticles (NPs) as a promising approach, integrating an aggregation-induced emission (AIE)-based photosensitizer, TBPP, with the MF3Ec aptamer to enhance targeted photodynamic therapy (PDT) for Luminal A subtype BC cells. The nanoparticles also feature a 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) shell and dipalmitoyl phosphatidylcholine (DPPC), which stabilize the structure and inhibit singlet oxygen generation, effectively reducing off-target effects and protecting healthy tissues.
View Article and Find Full Text PDF