98%
921
2 minutes
20
To simplify the design of a beam scanning device, we present a simple and compact structure to realize the frequency scanning characteristic based on a hybrid waveguide consisting of a spoof surface plasmon polariton (SSPP) transmission line and half-mode substrate integrated waveguide (HMSIW). Additionally, the radiation characteristic is implemented using periodically modulated slots. The scanning angle range covers backward to forward directions without an open stop band at the broadside. The results from both simulations and measurements show that the total scanning angle reaches 117° for a frequency range of 9-11.4 GHz. Owing to the inherent features of the HMSIW and the unique design of the SSPP transmission line, the entire structure is only 139.2×15 in size. Moreover, the average gain is approximately 6.5 dBi. Overall, the compact size and good performance ensure that the proposed design is favorable for planar integrated communication systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.434411 | DOI Listing |
Cureus
August 2025
Department of Oral and Maxillofacial Surgery, University College of Medicine and Dentistry, The University of Lahore, Lahore, PAK.
Background And Aim: The incisive (nasopalatine) canal is an important anatomical structure of the anterior maxilla. It holds significance for surgeries and implant placement in the central incisor region. The size, shape, and relation with surrounding bones may vary by age, gender, and ethnicity.
View Article and Find Full Text PDFInt J Oral Implantol (Berl)
September 2025
Purpose: To compare the accuracy of static guided surgery using a pilot drill guide and dynamic guided surgery for dental implant placement.
Materials And Methods: Partially edentulous adult patients requiring implant placement were randomly assigned to either the static guided surgery group using a pilot drill guide or the dynamic guided surgery group. Digital implant planning was conducted using intraoral scans and CBCT with planning software to determine the optimal prosthetic position.
Int J Oral Implantol (Berl)
September 2025
Purpose: To present a novel digital workflow (the Columbus Digital Bridge Protocol) for immediately loaded full-arch rehabilitations, integrating digital technologies throughout diagnostic, surgical and prosthetic phases, with a focus on the application of intraoral photogrammetry scanning.
Materials And Methods: The workflow presented in this article, successfully implemented in 14 patients, includes standardised clinical steps: digital diagnostic planning through matching of facial scans and CBCT data, surgical placement of four implants following tooth extraction, immediate post-surgical intraoral photogrammetry scanning using a three-step procedure (i.e.
J Dent
September 2025
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.. Electronic address:
Objectives: This retrospective study evaluates alveolar bone remodeling patterns and their association with incisor displacement in adults undergoing clear aligner therapy with premolar extractions for Class II malocclusion correction.
Methods: Cone-beam computed tomography (CBCT) scans of 38 maxillary and 37 mandibular incisors were analyzed. Displacement vectors for four anatomical landmarks (cusp tip [C], root apex [R], root neck midpoint [M], labial cementoenamel junction [L]) were quantified.
Adv Mater
September 2025
Dept. of Physics, Pennsylvania State University, University Park, PA, 16802, USA.
Altermagnets are a newly identified family of collinear antiferromagnets with a momentum-dependent spin-split band structure of non-relativistic origin, derived from spin-group symmetry-protected crystal structures. Among candidate altermagnets, CrSb is attractive for potential applications because of a large spin-splitting near the Fermi level and a high Néel transition temperature of around 700 K. Molecular beam epitaxy is used to synthesize CrSb (0001) thin films with thicknesses ranging from 10 to 100 nm.
View Article and Find Full Text PDF