98%
921
2 minutes
20
The development of countermeasures that aid in the prevention and propagation of SARS-CoV-2 infections is critical to manage the continuing crisis brought about by COVID-19. Here we present a proof-of-concept study on the use of cell-mimetic microparticles (Cytomimetics) for the interference and sequestration of SARS-CoV-2 virions away from the cellular surfaces required for replication, disease manifestation, and outbreak propagation. Recombinant human ACE2 (rhACE2) functionalized onto the surface of cytomimetic particles binds the receptor binding domain (RBD) of recombinant SARS-CoV-2 spike protein with high affinity and demonstrated a stoichiometric advantage over the use of soluble rhACE2. Inhalation of rhACE2-Cytomimetic particles by mice prior to their exposure to aerosolized spike protein demonstrated the applicability of these cytomimetic particles in preventing viral protein binding to respiratory epithelial cells. Our study demonstrates the potential of an easily deliverable and highly modular technology for the control of viral infections and to complement other prophylactic countermeasures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482554 | PMC |
http://dx.doi.org/10.1016/j.btre.2021.e00681 | DOI Listing |
Phys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.
View Article and Find Full Text PDFInfluenza Other Respir Viruses
September 2025
Department of Medical Laboratory, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
Objectives: This study compared the diagnostic accuracy of seven different commercial serological assays for COVID-19, using RT-PCR as the gold standard, through meta-analysis and indirect comparison.
Methods: Fifty-seven studies, published from November 2019 to June 2024, were included. The diagnostic performance of IgA, IgG, and total antibody assays for SARS-CoV-2 was assessed.
Antiviral Res
September 2025
Department of Immunology and Pathogen Biology, Key Laboratory of Pathogen and Host-Interactions, Ministry of Education, School of Medicine, Tongji University, Shanghai 200331, China. Electronic address:
DMBT1 is a large scavenger receptor cysteine rich (SRCR) B protein that has been reported as a tumor suppressor gene and a co-receptor for HIV-1 infection. Here we found DMBT1 is a major mucosal protein bound to SARS-CoV-2. Overexpression of DMBT1 in 293T cells may enhanced infection by SARS-CoV-2 in ACE2 dependent manner.
View Article and Find Full Text PDFExtensive mutations in SARS-CoV-2 spike protein have rendered most therapeutic monoclonal antibodies (mAbs) ineffective. However, here we describe VYD222 (pemivibart), a human mAb re-engineered from ADG20 (adintrevimab), which maintains potency despite substantial virus evolution. VYD222 received FDA Emergency Use Authorization for pre-exposure prophylaxis of COVID-19 in certain immunocompromised adults and adolescents.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0359, USA.
Discovery of therapeutic antibodies against infectious disease pathogens presents distinct challenges. Ideal candidates must possess not only the properties required for any therapeutic antibody (e.g.
View Article and Find Full Text PDF