98%
921
2 minutes
20
The development of the rumen is a critical physiological challenge in newborn ruminants. However, the molecular mechanism underlying different stages of rumen development in sheep remains poorly understood. Here, RNA sequencing and bioinformatics analysis were performed to compare the transcription profiles of rumen development at 7, 28 and 56days of birth (D7, D28 and D56). We identified 1246, 2257 and 627 differentially expressed genes (DEGs) between D7 and D28, between D7 and D56, between D28 and D56, respectively. Also, 70 DGEs were co-expressed at these three time points. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated most DEGs mainly related to transporter activity, channel activity and metabolism pathways. Noteworthy, the expression levels of most genes (, , and ) in nitrogen metabolic pathways were negatively correlated with the papilla length and width, but the papilla length and width were positively correlated with the expression of genes (, , ) in ion transport pathway, suggesting that these genes may be involved in nitrogen metabolic and ion transport pathway and thus affect rumen development. These results provide new insight into the changes in RNA expression at different time points of rumen development in Hu sheep.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10495398.2021.1975728 | DOI Listing |
Vet Clin North Am Food Anim Pract
September 2025
Department of Animal Science, Colorado State University, 350 West Pitkin Street, Fort Collins, USA. Electronic address:
The current article describes select nutritional metabolic disorders that can impact the health and well-being of beef and dairy cattle. These include: Subclinical or clinical acidosis that can lead to rumen, hind gut, or systemic acidosis. Acidosis can disrupt epithelial barrier function in the rumen and hindgut, enabling bacteria to enter the portal vein and form liver abscesses.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
September 2025
Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
Background: As an indigenous livestock species on the Tibetan Plateau, Tibetan sheep exhibit remarkable adaptability to low temperatures and nutrient-scarce environments. During the cold season, Tibetan sheep are typically managed under two feeding regimes: barn feeding (BF) and traditional grazing (TG). However, the molecular mechanisms underlying their adaptation to these distinct management strategies remain unclear.
View Article and Find Full Text PDFVet Sci
July 2025
Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
This study evaluated the effects of maternal supplementation with rumen-protected methionine (RPM), alone or combined with rumen-protected choline (RPC) and betaine (RPB), during the periconceptional and prepartum periods on reproductive outcomes and offspring performance in Chios ewes. One hundred synchronized ewes were assigned to three groups-control (no supplementation), M (5.50 g RPM/day), and MCB (3.
View Article and Find Full Text PDFVet Sci
July 2025
Laboratory of Metabolic Manipulation of Herbivores Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
The objective of this study was to evaluate the effect of tyrosine on behavior and ruminal meta-taxonomic profile of Altay sheep. Twelve rams with the lowest behavioral responses to humans and twelve rams with the highest behavioral responses were sorted into calm and nervous groups, respectively. Following the 2 × 2 factorial design, the rams from each group were equally assigned two treatments of a basal diet and a diet with an extra 4 g of tyrosine for 30 d.
View Article and Find Full Text PDFMicroorganisms
August 2025
College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China.
To develop sustainable strategies for mitigating ruminal methanogenesis and improving nitrogen efficiency in dairy systems, this study investigated how low-dose tannic acid (T), tea polyphenols (TP), and their combination (T+TP; 50:50) modulate rumen microbiota and function. A sample of Holstein cows were given four dietary treatments: (1) control (basal diet); (2) T (basal diet + 0.4% DM tannic acid); (3) TP (basal diet + 0.
View Article and Find Full Text PDF