98%
921
2 minutes
20
The extensive application of pesticides in agriculture raises concerns about their potential negative impact on soil microorganisms, being the key drivers of nutrient cycling. Most studies have investigated the effect of a single pesticide on a nutrient cycling in single soil type. We, for the first time, investigated the effect of 20 commercial pesticides with different mode of actions, applied at their recommended dose and five times their recommended dose, on nitrogen (N) microbial cycling in three different agricultural soils from southern Australian. Functional effects were determined by measuring soil enzymatic activities of β-1,4-N-acetyliglucosaminidase (NAG) and l-leucine aminopeptidase (LAP), potential nitrification (PN), and the abundance of functional genes involved in N cycling (amoA and nifH). Effects on nitrifiers diversity were determined with amplicon sequencing. Overall, the pesticides effect on N microbial cycling was dose-independent and soil specific. The fungicides flutriafol and azoxystrobin, the herbicide chlorsulfuron and the insecticide fipronil induced a significant reduction in PN and β-1,4-N-acetylglucosaminidase activity (P < 0.05) (NAG) in the alkaline loam soil with low organic carbon content i.e. a soil with properties which typically favors pesticide bioavailability and therefore potential toxicity. For the nitrifier community, the greatest pesticide effects were on the most dominant Nitrososphaeraceae (ammonia-oxidizing archaea; AOA) whose abundance increased significantly compared to the less dominant AOA and other nitrifiers. The inhibiting effects were more evident in the soil samples treated with fungicides. By testing multiple pesticides in a single study, our findings provide crucial information that can be used for pesticide hazard assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.150734 | DOI Listing |
J Environ Manage
September 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China.
The fragmented ecological environment in the mining ecosystem has a significant impact on the microbial community and affects ecosystem stability. Arbuscular mycorrhizal fungi (AMF) facilitate nutrient exchange and element cycling between soil and plants, which play a crucial role in the functionality and stability of soil ecosystems. However, the mechanism of ecological environment factors influencing AMF community assembly in mining areas is still unclear.
View Article and Find Full Text PDFmBio
September 2025
Food and Agriculture Organization of the United Nations, Rome, Italy.
The One Health Joint Plan of Action (2022-2026), developed by the United Nations Quadripartite (FAO, UNEP, WHO, and WOAH), provides a comprehensive framework to address global health risks at the human-animal-plant-environment interface. However, it overlooks the critical role of microbiomes-complex microbial communities that underpin the health of all ecosystems and are central to the One Health paradigm. Microbiomes regulate key processes, such as nutrient cycling, pathogen suppression, antimicrobial resistance (AMR) dynamics, and environmental resilience, making their inclusion essential for achieving One Health goals.
View Article and Find Full Text PDFmSystems
September 2025
Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas, USA.
is a human fungal pathogen that survives and proliferates within phagocytic immune cells. To sustain growth in the nutrient-limited phagosome environment, the pathogenic yeast scavenges available carbon sources, which must be metabolized through central carbon metabolism for respiration and biomass synthesis. However, carbon metabolic pathways operating in the pathogenic yeast phase have not been extensively mapped.
View Article and Find Full Text PDFmSystems
September 2025
Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA.
Dinitrogen (N) fixation provides bioavailable nitrogen to the biosphere. However, in some habitats (e.g.
View Article and Find Full Text PDFmBio
September 2025
Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.
Unlabelled: Fungal degradation of cellulose facilitates the sustainable harnessing of biosphere energy and carbon cycling. is one of the basidiomycetes with the largest number of hydrolytic enzymes in its genome. The mycelium of degrades cellulose through the production of substantial amounts of cellulase, enabling the absorption of carbon sources and nutrients essential for fruiting body development.
View Article and Find Full Text PDF