Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For treating cancer at various stages, chemotherapy drugs administered in combination provide better treatment results with lower side effects compared to single-drug therapy. However, finding the potential drug combinations has been challenging due to the large numbers of possible combinations from approved drugs and the failure of in vitro 2D well plate-based cancer models. 3D spheroid-based high-throughput microfluidic platforms recapitulate some of the important features of native tumor tissue and offer a promising alternative to evaluate the combinatory effects of the drugs. This study develops a novel polydimethylsiloxane (PDMS) based microfluidic design with a dynamic environment and strategically placed U-shaped wells for testing all seven possible combinations (three single-drug treatments, three pairwise combinations, treatment with all three drugs) of three chemotherapy drugs (Paclitaxel, Vinorelbine, and Etoposide) on lung tumor spheroids. The design of U-shaped wells has been validated with computational results. Firstly, we test all combinations of drugs on the conventional well plate in static conditions with 3D tumor spheroids. Based on static drug testing results, we show a proof-of-concept by testing the most effective drug combination on the microfluidic device in a dynamic environment. The concentration of the drugs used in combination falls below the maximum tolerated dose (MTD) of the individual drugs, towards low dose metronomic (LDM) chemotherapy. LDM combinatorial chemotherapy identified in this study can potentially lower toxicity and provide better treatment results in cancer patients. The device can be further used to culture patient-specific tumor spheroids and identify synergistic drug combinations for personalized medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-021-00593-wDOI Listing

Publication Analysis

Top Keywords

tumor spheroids
12
combinatorial chemotherapy
8
drugs
8
chemotherapy drugs
8
provide better
8
better treatment
8
drug combinations
8
dynamic environment
8
u-shaped wells
8
combinations
6

Similar Publications

Purpose: Tumor hypoxia is a key barrier to successful delivery and activity of anti-cancer agents. To tackle this, we designed hypoxia-responsive Au-PEI-Azo-mPEG nanoparticles (NPs) denoted as APAP NPs for targeted delivery of hypoxia-activated prodrug (HAP), tirapazamine (TPZ) to hypoxic breast cancer cells.

Methods: AuNPs were first synthesized.

View Article and Find Full Text PDF

Ovarian cancer (OvCa) remains the leading cause of gynecological cancer mortality, with most patients developing chemoresistance. Drug repurposing offers promising alternatives, with mebendazole (MBZ) showing anticancer activity. This study evaluates MBZ efficacy using Spectral Domain Optical Coherence Tomography (SD-OCT).

View Article and Find Full Text PDF

Breast cancer is the most prevalent cancer among women, posing significant challenges due to its heterogeneity. Recent studies suggest that the ketogenic diet (KD) may enhance chemotherapy efficacy by modulating cancer cell metabolism, particularly through the elevation of ketone bodies like β-hydroxybutyrate (BHB). This study investigates the effects of BHB on breast cancer cells using both 2D and 3D culture models, focusing on its role in developing resistance to fluorouracil (5-FU).

View Article and Find Full Text PDF

An integrated approach is proposed to rapidly evaluate the effects of anticancer treatments in 3D models, combining a droplet-based microfluidic platform for spheroid formation and single-spheroid chemotherapy application, label-free morphological analysis, and machine learning to assess treatment response. Morphological features of spheroids, such as size and color intensity, are extracted and selected using the multivariate information-based inductive causation algorithm, and used to train a neural network for spheroid classification into viability classes, derived from metabolic assays performed within the same platform as a benchmark. The model is tested on Ewing sarcoma cell lines and patient-derived xenograft (PDX) cells, demonstrating robust performance across datasets.

View Article and Find Full Text PDF

Patient-derived tumor organoids (PDTOs) are promising 3D disease models for developing personalized treatment methods. However, conventional technologies for making PDTOs have limitations such as batch-to-batch variation and low throughput. Droplet microfluidics (DM), which utilizes uniform droplets generated in microchannels, has demonstrated potential for creating organoids due to its high-throughput and controllable parameters.

View Article and Find Full Text PDF