Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Besides its structural properties in the nucleoskeleton, Lamin A/C is a mechanosensor protein involved in perceiving the elasticity of the extracellular matrix. In this study we provide evidence about Lamin A/C-mediated regulation of osteosarcoma cell adhesion and spreading on substrates with tissue-specific elasticities. Our working hypothesis is based on the observation that low-aggressive and bone-resident SaOS-2 osteosarcoma cells express high level of Lamin A/C in comparison to highly metastatic, preferentially to the lung, osteosarcoma 143B cells, thereby suggesting a role for Lamin A/C in tumor cell tropism. Specifically, LMNA gene over-expression in 143B cells induced a reduction in tumor cell aggressiveness in comparison to parental cells, with decreased proliferation rate and reduced migration capability. Furthermore, LMNA reintegration into 143B cells changed the adhesion properties of tumor cells, from a preferential tropism toward the 1.5 kPa PDMS substrate (resembling normal lung parenchyma) to the 28 kPa (resembling pre-mineralized bone osteoid matrix). Our study suggests that Lamin A/C expression could be involved in the organ tropism of tumor cells, thereby providing a rationale for further studies focused on the definition of cancer mechanism of metastatization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476891PMC
http://dx.doi.org/10.3389/fcell.2021.712377DOI Listing

Publication Analysis

Top Keywords

lamin a/c
20
tumor cell
12
143b cells
12
a/c mechanosensor
8
cell aggressiveness
8
substrates tissue-specific
8
matrix study
8
tumor cells
8
cells
7
lamin
6

Similar Publications

Background: Genetic aetiologies of early-onset arrhythmias and cardiomyopathy (CM) are common, but timely diagnosis requires a high index of suspicion.

Case Summary: An asymptomatic 47-year-old man presented to cardiology clinic for smartwatch low-rate alarms. His brother had exertional syncope and died in his 20s from heart failure.

View Article and Find Full Text PDF

Analysis of Beta-Dystroglycan in Different Cell Models of Senescence.

Int J Mol Sci

August 2025

Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico.

The functional diversity of β-dystroglycan is attributable to its dual distribution, the plasma membrane, and the nucleus. In the plasma membrane, β-DG is a component of the dystrophin-associated protein complex. In the nucleus, β-DG assembles with the nuclear lamina and emerin.

View Article and Find Full Text PDF

It was reported that polyphenols extracted from Korean L. (pKAL) have higher anticancer effects in oxaliplatin-resistant (OxPt-R) HCT116 cells than in HCT116 cells. In this study, it was tested whether and how AsO enhances anticancer effects of pKAL in HCT116 and HCT116-OxPt-R colorectal cancer cells.

View Article and Find Full Text PDF

Deregulated miR-145 and miR-27b in hutchinson-gilford progeria syndrome: implications for adipogenesis.

Aging (Albany NY)

August 2025

Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), Garching 85748, Germany.

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal disorder that causes premature aging, affecting approximately one in 4-8 million births. Most cases result from a mutation in the lamin A/C () gene, leading to the production of progerin, an aberrant lamin A variant that disrupts nuclear architecture and alters gene expression, including microRNA (miRNA) deregulation. This study aimed to investigate the molecular mechanisms underlying HGPS and aging using global miRNA sequencing to identify key deregulated miRNAs.

View Article and Find Full Text PDF

Inducing the senescence of activated hepatic stellate cells (HSCs) has emerged as a promising therapeutic strategy for liver fibrosis, with potential connections to the Yes-associated protein (YAP)-controlled cGAS-STING pathway. However, the regulatory role of cytoskeletal dynamics on HSC senescence and its potential as a target for natural products have remained poorly understood. We employed preclinical and transcriptome analyses, experimental systems, Tmem173 mice and liver-specific STING knockdown mice to demonstrate the anti-fibrotic effects and mechanism of ligustilide (LIG).

View Article and Find Full Text PDF