Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proteins are like miracle machines, playing important roles in living organisms. They perform vital biofunctions by further combining together and/or with other biomacromolecules to form assemblies or condensates such as membraneless organelles. Therefore, studying the self-assembly of biomacromolecules is of fundamental importance. In addition to their biological activities, protein assemblies also exhibit extra properties that enable them to achieve applications beyond their original functions. Herein, this study showed that in the presence of monosaccharides, ethylene glycols, and amino acids, β-lactoglobulin (β-LG) can form assemblies with specific structures, which were highly reproducible. The mechanism of the assembly process was studied through multi-scale observations and theoretical analysis, and it was found that the assembling all started from the formation of solute-rich liquid droplets via liquid-liquid phase separation (LLPS). These droplets then combined together to form condensates with elaborate structures, and the condensates finally evolved to form assemblies with various morphologies. Such a mechanism of the assembly is valuable for studying the assembly processes that frequently occur in living organisms. Detailed studies concerning the properties and applications of the obtained β-LG assemblies showed that the assemblies exhibited significantly better performances than the protein itself in terms of autofluorescence, antioxidant activity, and metal ion absorption, which indicates broad applications of these assemblies in bioimaging, biodetection, biodiagnosis, health maintenance, and pollution treatment. This study revealed that biomacromolecules, especially proteins, can be assembled via LLPS, and some unexpected application potentials could be found beyond their original biological functions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c14634DOI Listing

Publication Analysis

Top Keywords

form assemblies
12
liquid-liquid phase
8
phase separation
8
biological functions
8
living organisms
8
mechanism assembly
8
assemblies
7
formation β-lactoglobulin
4
β-lactoglobulin self-assemblies
4
self-assemblies liquid-liquid
4

Similar Publications

Molecular Plasmonic Cavities.

Nano Lett

September 2025

Department of Physics, Columbia University, New York, New York 10027, United States.

Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.

View Article and Find Full Text PDF

Structural colors offer distinct advantages over traditional chemical colors (such as pigments and dyes), including high saturation, resistance to fading, and environmental friendliness. However, unlike traditional dyes or pigments that allow for Structural colors offer distinct advantages over traditional chemical colors (such as pigments and dyes), including high saturation, resistance to fading, and environmental friendliness. However, unlike traditional dyes or pigments that allow for arbitrary color adjustments during the coloring process, current structural color surfaces lack flexibility in control, as their colors are difficult to reprocess or adjust once formed.

View Article and Find Full Text PDF

Nucleic acid aptamers are artificial recognition elements with great potential in biotechnology. For their effective integration into nanodevices, rational strategies for optimizing aptamer affinity and regulating activity are essential. Artificial nucleotide analogs offer versatile tools for both fundamental and applied research in the aptamer field.

View Article and Find Full Text PDF

Dysregulated spine morphology is a common feature in the pathology of many neurodevelopmental and neuropsychiatric disorders. Overabundant immature dendritic spines in the hippocampus are causally related to cognitive deficits of Fragile X syndrome (FXS), the most common form of heritable intellectual disability. Recent findings from us and others indicate autophagy plays important roles in synaptic stability and morphology, and autophagy is downregulated in FXS neurons.

View Article and Find Full Text PDF

Crystal structures of distinct parallel and antiparallel DNA G-quadruplexes reveal structural polymorphism in C9orf72 G4C2 repeats.

Nucleic Acids Res

September 2025

State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China.

The abnormal expansion of GGGGCC (G4C2) repeats in the noncoding region of the C9orf72 gene is a major genetic cause of two devastating neurodegenerative disorders, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These G4C2 repeats are known to form G-quadruplex (G4) structures, which are hypothesized to contribute to disease pathogenesis. Here, we demonstrated that four DNA G4C2 repeats can fold into two structurally distinct G4 conformations: a parallel and an antiparallel topology.

View Article and Find Full Text PDF