Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Our work focuses on the development of simpler and effective production of nanofluidic devices for high-throughput charged single nanoparticle trapping in an aqueous environment. Single nanoparticle confinement using electrostatic trapping has been an effective approach to study the fundamental properties of charged molecules under a controlled aqueous environment. Conventionally, geometry-induced electrostatic trapping devices are fabricated using SiOx-based substrates and comprise nanochannels imbedded with nanoindentations such as nanopockets, nanoslits and nanogrids. These geometry-induced electrostatic trapping devices can only trap negatively charged particles, and therefore, to trap positively charged particles, modification of the device surface is required. However, the surface modification process of a nanofluidic device is cumbersome and time consuming. Therefore, here, we present a novel approach for the development of surface-modified geometry-induced electrostatic trapping devices that reduces the surface modification time from nearly 5 days to just a few hours. We utilized polydimethylsiloxane for the development of a surface-modified geometry-induced electrostatic trapping device. To demonstrate the device efficiency and success of the surface modification procedure, a comparison study between a PDMS-based geometry-induced electrostatic trapping device and the surface-modified polydimethylsiloxane-based device was performed. The device surface was modified with two layers of polyelectrolytes (1: poly(ethyleneimine) and 2: poly(styrenesulfonate)), which led to an overall negatively charged surface. Our experiments revealed the presence of a homogeneous surface charge density inside the fluidic devices and equivalent trapping strengths for the surface-modified and native polydimethylsiloxane-based geometry-induced electrostatic trapping devices. This work paves the way towards broader use of geometry-induced electrostatic trapping devices in the fields of biosensing, disease diagnosis, molecular analysis, fluid quality control and pathogen detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433227PMC
http://dx.doi.org/10.1038/s41378-021-00273-yDOI Listing

Publication Analysis

Top Keywords

electrostatic trapping
32
geometry-induced electrostatic
28
trapping devices
20
single nanoparticle
12
surface modification
12
trapping
11
devices
8
nanofluidic devices
8
nanoparticle trapping
8
aqueous environment
8

Similar Publications

This review addresses the compact modelling strategies for field-effect transistors based on two-dimensional materials (2D-FETs), which offer excellent electrostatic control and strong scaling potential thanks to their atomically thin channels. Achieving the integration of 2D-FETs into high-density circuits demands accurate compact models, beyond those established for silicon MOSFETs. We discuss the characteristics of the main 2D material suitable for nanoelectronics and examine the main modelling approaches and challenges, with a focus on top-gated devices and transport regimes spanning from diffusive to ballistic.

View Article and Find Full Text PDF

The continuous miniaturization of semiconductor nanodevices necessitates advanced characterization techniques to probe their internal electrostatic potential under operational conditions. Off-axis electron holography (EH) enables quantitative mapping of phase shifts induced by electrostatic potentials, yet its application in operando transmission electron microscopy (TEM) is hindered by focused ion beam (FIB)-induced surface artifacts, such as amorphized layers and charge trapping, which distort the potential landscape, in addition to long-range electric stray fields. This study introduces an extended multilayer framework to efficiently model 3D electrostatic potential distributions in such FIB-prepared TEM-lamellae.

View Article and Find Full Text PDF

Electrons in Quantum Dots on Helium: From Charge Qubits to Synthetic Color Centers.

Entropy (Basel)

July 2025

Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA.

Electrons trapped above the surface of helium provide a means to study many-body physics free from the randomness that comes from defects in other condensed-matter systems. Localizing an electron in an electrostatic quantum dot makes its energy spectrum discrete, with controlled level spacing. The lowest two states can act as charge qubit states.

View Article and Find Full Text PDF

Optical fiber composite insulators are essential for photoelectric current measurement, yet insulation failure at embedded optical fiber interfaces remains a major challenge to long-term stability. This study proposes a strategy to replace conventional silicone rubber with cycloaliphatic-like epoxy resin (CEP) as the shed-sheathing material. Three optical fibers with distinct outer coatings, ethylene-tetrafluoroethylene copolymer (ETFE), thermoplastic polyester elastomer (TPEE), and epoxy acrylate resin (EA), were evaluated for their interfacial compatibility with CEP.

View Article and Find Full Text PDF

Charge carrier mobility is a key factor underlying the performance of conjugated polymers as conductive materials for flexible and lightweight electronics. Chemical doping is typically used to improve polymer conductivity by increasing the carrier density. However, doping consequently induces both morphological and electrostatic changes within the polymer that impact charge mobility, the extent to which remains unclear.

View Article and Find Full Text PDF