Optical fiber composite insulators are essential for photoelectric current measurement, yet insulation failure at embedded optical fiber interfaces remains a major challenge to long-term stability. This study proposes a strategy to replace conventional silicone rubber with cycloaliphatic-like epoxy resin (CEP) as the shed-sheathing material. Three optical fibers with distinct outer coatings, ethylene-tetrafluoroethylene copolymer (ETFE), thermoplastic polyester elastomer (TPEE), and epoxy acrylate resin (EA), were evaluated for their interfacial compatibility with CEP.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
December 2024
Advancements in three-dimensional (3D) organoid cultures have created more physiologically relevant models for pancreatic disease research, but efficiently generating mature pancreatic ductal cells remains challenging. In this study, we develop a novel protocol to generate pancreatic ductal organoids (PDOs) with high initiation efficiency and an enrichment of pancreatic ductal cells. By utilizing a cocktail of small molecules, we optimize the culture conditions to improve organoid formation.
View Article and Find Full Text PDFNat Prod Res
April 2025
An undescribed sesquiterpene guxinusocapsa A (), featuring a unique 5/7/6 tricyclic skeleton, and three known compounds () was isolated from the mangrove endophytic fungus sp. GXNU R1. These isolates were established primarily through NMR data analysis.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2023
To improve the material removal efficiency and surface quality of single-crystal silicon after magnetorheological finishing, a novel green chemical-mechanical magnetorheological finishing (CMMRF) fluid was developed. The main components of the CMMRF fluid are nano-FeO, HO, CHCOOH, nanodiamond, carbonyl iron powder, and deionized water. The novel CMMRF fluid can simultaneously achieve Ra 0.
View Article and Find Full Text PDFOpt Express
December 2022
Magnetorheological finishing (MRF) is a sub-aperture polishing process, which is often used to correct surface errors and remove sub-surface damage after grinding. A strong correlation exists between the material removal rate and surface roughness in MRF, but current theoretical models are incapable of predicting these two factors at the same time. In this paper, a theoretical model was developed to describe the material removal rate and surface quality after MRF in order to better understand the material removal mechanism of MRF and explain the relationship between surface roughness and material removal rate.
View Article and Find Full Text PDFX ray mirrors are symmetrical workpieces along the length and width and are widely used in various optical systems. Unlike the center-symmetric circular mirror, it is more difficult to suppress the edge effect of the x ray mirror during the polishing process, which greatly limits the polishing accuracy and polishing efficiency. Based on this, the unique edge effect of x ray mirrors is investigated in depth in this paper.
View Article and Find Full Text PDFMaterials (Basel)
March 2020
Nanoscale laser damage precursors generated from fabrication have emerged as a new bottleneck that limits the laser damage resistance improvement of fused silica optics. In this paper, ion beam etching (IBE) technology is performed to investigate the evolutions of some nanoscale damage precursors (such as contamination and chemical structural defects) in different ion beam etched depths. Surface material structure analyses and laser damage resistance measurements are conducted.
View Article and Find Full Text PDFThis paper presented a conformal smoothing theory, and smoothing capability evaluation was established on the proposed theory. According to pressure distribution model, processing parameters have been optimized and the CPP sample with a size of 340 × 340 mm was applied in conformal smoothing. The middle spatial frequency was effectively corrected with the total polishing time of 750 min, and energy was constringed 32.
View Article and Find Full Text PDFThe silica opticsare widely applied in the modern laser system, and its fabrication is always the research focus. In the manufacturing process, the lapping process occurs between grinding and final polishing. However, lapping processes optimizations focus on decreasing the depth of sub-surface damage (SSD) or improving lapping efficiency individually.
View Article and Find Full Text PDFNear-surface nanoscale damage precursor generated from the fabrication process has great influence on laser-induced damage threshold improvement of fused silica. In this work, high-resolution transmission electron microscopy (HRTEM) is used to characterize the arrangement of material particles near surface. The nanoscale defects in the Beilby layer could be clearly distinguished.
View Article and Find Full Text PDFEnviron Monit Assess
November 2011
Nonylphenol (NP) is regarded as a kind of persistent organic pollutant which exists ubiquitously in the environment. The objective of this study was to evaluate the effects of NP on Chlorella vulgaris physiological indices and gene transcription. The results showed that NP stress inhibited algal growth in short-term bioassay.
View Article and Find Full Text PDFA series of cyanobipyridine-derived zinc(II) bis(thiolate) complexes are prepared rapidly and efficiently by a microwave-assisted cross-coupling/complexation sequence and display luminescence that can be modulated using intrinsic functionality and ancillary ligands.
View Article and Find Full Text PDFNicotinonitrile chromophores with two tunable functions, excellent photophysical properties and solvatochromic behaviour can be prepared quickly and efficiently by microwave-assisted tandem oxidation/Bohlmann-Rahtz heteroannulation followed by copper(I)-mediated N-arylation.
View Article and Find Full Text PDF