A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

TelecomNet: Tag-Based Weakly-Supervised Modally Cooperative Hashing Network for Image Retrieval. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We are concerned with using user-tagged images to learn proper hashing functions for image retrieval. The benefits are two-fold: (1) we could obtain abundant training data for deep hashing models; (2) tagging data possesses richer semantic information which could help better characterize similarity relationships between images. However, tagging data suffers from noises, vagueness and incompleteness. Different from previous unsupervised or supervised hashing learning, we propose a novel weakly-supervised deep hashing framework which consists of two stages: weakly-supervised pre-training and supervised fine-tuning. The second stage is as usual. In the first stage, we propose two formulations Tag-basEd weakLy-supErvised Modally COoperative hashing Network (TelecomNet) and Generalized TelecomNet (GTelecomNet). Rather than performing supervision on tags, TelecomNet first learns an observed semantic embedding vector for each image from attached tags and then uses it to guide hashing learning. GTelecomNet introduces a novel semantic network to exploit more precise semantic information. By carefully designing the optimization problem, they can well leverage tagging information and image content for hashing learning. The framework is general and does not depend on specific deep hashing methods. Empirical results on real world datasets show that they significantly increase the performance of state-of-the-art deep hashing methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2021.3114089DOI Listing

Publication Analysis

Top Keywords

deep hashing
16
hashing learning
12
hashing
10
tag-based weakly-supervised
8
weakly-supervised modally
8
modally cooperative
8
cooperative hashing
8
hashing network
8
image retrieval
8
tagging data
8

Similar Publications