Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Excessive nitrate and orthophosphate carried by the stormwater runoff potentially lead to eutrophication in surface water bodies. Various green infrastructures are used that commonly consider the biological treatment of nutrients from the runoff. Due to the leaching and clogging complexities in biological mechanisms, the selection of high-flow, eco-friendly, and recycled adsorbents has been advocated to promote the physiochemical treatment of nutrients as an alternative. In this study, column experiments were conducted to investigate the transport, fate, adsorption equilibria, and reaction kinetics of nitrate (NO-N) and orthophosphate (PO-P) onto three recycled adsorbents - recycled concrete aggregate (RCA), recycled crushed glass (RCG), rice husks (RH), and a layered media (LM), under high and low-flow conditions. The non-reactive solute transport in columns was investigated through the bromide tracer test. The HYDRUS-1D model was used to estimate adsorption coefficients and reaction kinetics of pollutants in unsaturated media columns. Our results indicated the maximum superficial pore velocity (v = 4.40 cm/s) and dispersion (α = 2.50 cm) in RCA at the low-flow condition. Overall, NO-N removal at the exhaustion was low in all columns, ranging between 1 and 25%. Conversely, orthophosphate removal was significant (p < 0.05) in RCA (≤94%) under low flow conditions with increased reaction kinetics (k = 3.45 min, k = 0.55 min) and enhanced adsorption capacity at saturation (q = 1.87E+05-2.33E+05 mg/kg). In conclusion, the dissolved-phase reaction kinetics (k) played a significant role apart from the physisorption for the satisfactory removal of orthophosphate in RCA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.132152DOI Listing

Publication Analysis

Top Keywords

reaction kinetics
16
recycled adsorbents
12
transport fate
8
kinetics nitrate
8
nitrate orthophosphate
8
high low-flow
8
stormwater runoff
8
treatment nutrients
8
kinetics
5
orthophosphate
5

Similar Publications

Antioxidants: The Chemical Complexity Behind a Simple Word.

Acc Chem Res

September 2025

Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ave. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A sección, Alcaldía Iztapalapa, 09310 Mexico City, Mexico.

ConspectusWhat does the word antioxidant mean? Antioxidants are supposed to be nontoxic, versatile molecules capable of counteracting the damaging effects of oxidative stress (OS). Thus, when evaluating a candidate molecule as an antioxidant, several aspects should be considered. Antioxidants are more than free radical scavengers.

View Article and Find Full Text PDF

Activating the Oxygen Evolution Performance of NiCuFe by Phosphorus Doping.

Langmuir

September 2025

College of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.

The oxygen evolution reaction (OER), a critical yet kinetically sluggish process in electrochemical water splitting, severely limits efficient hydrogen production. Herein, a simple one-step dynamic hydrogen bubble templated electrodeposition technique is used to prepare a self-supported 3D porous NiCuFeP catalyst with outstanding OER performance. In 1.

View Article and Find Full Text PDF

A kinetic and spectroscopic study of tetrahydrodipicolinate N-succinyltransferase (DapD) from Serratia marcescens and its inactivation by Cu.

Arch Biochem Biophys

September 2025

Department of Chemistry and Biochemistry, Howard College of Arts and Sciences, Samford University, 800 Lakeshore Drive, Birmingham, AL, USA, 35229. Electronic address:

Tetrahydrodipicolinate N-succinyltransferase (DapD) catalyzes the reaction of tetrahydrodipicolinate (THDP) and succinyl-CoA to form (S)-2-(3-carboxypropanamido)-6-oxoheptanedioic acid and coenzyme A. The enzyme is in the diaminopimelate-lysine biosynthesis pathway which produces two metabolites necessary for the survival and growth of pathogenic bacteria. Since lysine is an essential amino acid to humans, DapD is a potentially safe target for antibiotic therapies.

View Article and Find Full Text PDF

Michaelis-Menten kinetics of RasGAP proteins by a rapid fluorescence-based assay.

Methods

September 2025

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Pharmacology, Yale University, New Haven, CT 06510, USA; Yale Cancer Center, Yale University, New Haven, CT 06510, USA. Electronic address:

Ras small GTPases are essential for a wide range of cellular processes. These proteins cycle between the GDP-loaded and GTP-loaded states, and the actions of GTPase activating proteins (GAPs) are necessary to stimulate Ras-mediated GTP hydrolysis. Here, we provide a protocol to achieve Michaelis-Menten kinetic profiling of GAP-mediated stimulation of a small GTPase by real-time monitoring of inorganic phosphate release in vitro.

View Article and Find Full Text PDF

Interface-engineered CoN-WN heterostructure catalyst with synergistic dual-site hydrogen bonding and electronic modulation for efficient 5-hydroxymethylfurfural electrooxidation.

J Colloid Interface Sci

September 2025

Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China. Electronic address:

The 5-hydroxymethylfurfural electrooxidation reaction (HMFOR) stands out due to the value-added production and mild conditions. However, its catalytic efficiency is hampered by sluggish kinetics. Herein, with a focus on optimizing the adsorption and activation of reaction molecules, a CoN-WN heterostructure catalyst is constructed for efficient HMFOR.

View Article and Find Full Text PDF