Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Silencing of transposable elements (TEs) is essential for maintaining genome stability. Plants use small RNAs (sRNAs) to direct DNA methylation to TEs (RNA-directed DNA methylation; RdDM). Similar mechanisms of epigenetic silencing in the fungal kingdom have remained elusive.

Results: We use sRNA sequencing and methylation data to gain insight into epigenetics in the dikaryotic fungus Puccinia graminis f. sp. tritici (Pgt), which causes the devastating stem rust disease on wheat. We use Hi-C data to define the Pgt centromeres and show that they are repeat-rich regions (~250 kb) that are highly diverse in sequence between haplotypes and, like in plants, are enriched for young TEs. DNA cytosine methylation is particularly active at centromeres but also associated with genome-wide control of young TE insertions. Strikingly, over 90% of Pgt sRNAs and several RNAi genes are differentially expressed during infection. Pgt induces waves of functionally diversified sRNAs during infection. The early wave sRNAs are predominantly 21 nts with a 5' uracil derived from genes. In contrast, the late wave sRNAs are mainly 22-nt sRNAs with a 5' adenine and are strongly induced from centromeric regions. TEs that overlap with late wave sRNAs are more likely to be methylated, both inside and outside the centromeres, and methylated TEs exhibit a silencing effect on nearby genes.

Conclusions: We conclude that rust fungi use an epigenetic silencing pathway that might have similarity with RdDM in plants. The Pgt RNAi machinery and sRNAs are under tight temporal control throughout infection and might ensure genome stability during sporulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444563PMC
http://dx.doi.org/10.1186/s12915-021-01123-zDOI Listing

Publication Analysis

Top Keywords

dna methylation
12
wave srnas
12
stem rust
8
fungus puccinia
8
puccinia graminis
8
graminis tritici
8
small rnas
8
associated genome-wide
8
genome stability
8
srnas
8

Similar Publications

Precision plant epigenome editing: what, how, and why.

Trends Plant Sci

September 2025

School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, Australia, 4072. Electronic address:

Advances in genome engineering have paved the way for targeted epigenome engineering, providing fundamental insights into the role of epigenetic modifications in trait inheritance. Engineered epialleles have already delivered stable, heritable changes in agronomic traits. Despite this capacity, progress in the field has not yet achieved its potential, leaving many avenues of research unexplored.

View Article and Find Full Text PDF

Osteosarcoma (OS), the most prevalent primary bone malignancy in adolescents, is characterized by aggressive progression and early metastasis. However, the epigenetic drivers of its metastatic heterogeneity remain poorly understood. Herein, we integrated bulk DNA methylation profiling and single-cell RNA sequencing (scRNA-seq) to elucidate the epigenetic mechanisms driving OS metastatic heterogeneity.

View Article and Find Full Text PDF

Epigenetic changes and neurogenesis associated with socio-sexual behaviors.

Neurosci Biobehav Rev

September 2025

Instituto de Neurobiología, Universidad Nacional Autónoma de México.

Epigenetic mechanisms are essential in neurogenesis during development and adulthood. DNA methylation, histone post-translational modifications, and non-coding RNAs regulate gene expression to maintain the neural stem cell pool and direct the fate of newborn neurons by modulating cell proliferation, migration, differentiation, maturation, and survival. Adult neurogenesis exhibits bidirectional interactions with non-social and socio-sexual factors such as sexual behavior, mate recognition, pair bonding, parental behavior, and offspring recognition.

View Article and Find Full Text PDF

Background: Intracranial aneurysm (IA), known as pathological dilation of cerebral arteries,commonly occurring at bifurcating arteries,carries a high risk of severe morbidity and mortality if left untreated.Although the treatment and early diagnosis have significantly improved,the complex pathophysiological process of IA formation presents significant challenges in the development of targeted therapies.Efficient disease-modifying therapies for IA are not yet available.

View Article and Find Full Text PDF

An adverse gestational environment is a risk factor for the development of psychiatric disorders. Although studies have implicated modifications in neuronal DNA and chromatin, how these changes come about and lead to abnormal behaviors is not known. We sought to identify persistent DNA/chromatin and transcriptomic signatures induced by a proinflammatory gestational environment in the ventral dentate gyrus (vDG), a hippocampal region linked to anxiety.

View Article and Find Full Text PDF