98%
921
2 minutes
20
Thousands of dams are currently under construction or planned worldwide to meet the growing need for electricity. The creation of reservoirs could, however, lead to conditions that promote the accumulation of mercury (Hg) in surface sediments and the subsequent production of methylmercury (MeHg). Once produced, MeHg can bioaccumulate to harmful levels in organisms. It is unclear to what extent variations in physical features and biogeochemical factors of the reservoir impact Hg accumulation. The objective of this study was to identify key drivers of the accumulation of total Hg (THg) in tropical reservoir sediments. The concentration of THg in all analyzed depth intervals of 22 sediment cores from the five contrasting reservoirs investigated ranged from 16 to 310 ng g ( = 212, in the different sediment cores, the maximum depth varied from 18 to 96 cm). Our study suggests reservoir size to be an important parameter determining the concentration of THg accumulating in tropical reservoir sediments, with THg ranging up to 50 ng g in reservoirs with an area exceeding 400 km and from 100 to 200 ng g in reservoirs with an area less than 80 km. In addition to the reservoir size, the role of land use, nutrient loading, biome and sediment properties (, organic carbon content) was tested as potential drivers of THg levels. The principal component analysis conducted suggested THg to be related to the properties of the watershed (high degree of forest cover and low degree of agricultural land use), size and age of the reservoir, water residence time and the levels of nutrients in the reservoir. A direct correlation between THg and tested variables was, however, only observed with the area of the reservoir.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528188 | PMC |
http://dx.doi.org/10.1039/d1em00156f | DOI Listing |
J Microbiol Immunol Infect
August 2025
Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. Electronic address:
Background: Acinetobacter seifertii, a recently identified member of the Acinetobacter calcoaceticus-Acinetobacter baumannii (Acb) complex, has emerged as a cause of severe human infections. It is closely related to Acinetobacter nosocomialis, a major pathogen of the Acb complex. Here, we aimed to explore the clinical and molecular differences between these two species.
View Article and Find Full Text PDFMar Environ Res
September 2025
Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education,
Simultaneous measurements of dimethylsulfide (DMS) and isoprene in seawater and the overlying atmosphere were conducted in the tropical western Pacific Ocean during February-March 2017. Surface seawater exhibited a strong correlation between DMS and dimethylsulfoniopropionate (DMSP), with similar spatial distributions, whereas dimethylsulfoxide (DMSO) displayed an opposing trend. Latitudinal and vertical profiles of DMS, DMSP, and isoprene revealed their pronounced dependence on biological factors, particularly in subsurface layers.
View Article and Find Full Text PDFPLoS Med
September 2025
Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
Background: Limited mpox vaccination coverage, declining cross-protection from historical smallpox vaccination campaigns, and persistent zoonotic reservoirs leave many sub-Saharan countries susceptible to mpox outbreaks. With millions of vaccine doses made available to the region since late 2024 and the absence of country-specific guidelines for allocation, estimating the country-specific impact of one-time mass vaccination strategies is necessary for ongoing outbreaks and other countries at future risk.
Methods And Findings: We adapted a next generation matrix model to project disease transmission potential for 47 sub-Saharan countries from 2025 to 2050 under four transmission scenarios with different contributions of community versus sexual contacts.
Biology (Basel)
August 2025
National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
Leishmaniasis, a vector-borne neglected tropical disease, affects over 6.2 million people globally. Case acquisition is increasingly recognized in the United States, and in Texas, most reported cases are locally acquired and speciated to .
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Pelagic Ecology Research Group, School of Biology, Gatty Marine Laboratory, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, United Kingdom.
In areas of high infection prevalence, effective control of schistosomiasis - one of the most important Neglected Tropical Diseases - requires supplementing medical treatment with interventions targeted at the environmental reservoir of disease. In addition to provision of clean water, reliable sanitation, and molluscicide use to control the obligate intermediate host snail, top-down biological control of parasite-competent snails has recently gained increasing interest in the scientific community. However, evidence that natural predators can effectively reduce snail abundance and, ultimately, transmission risk to vulnerable human populations remains limited.
View Article and Find Full Text PDF