Subsystem Density Functional Theory Augmented by a Delta Learning Approach to Achieve Kohn-Sham Accuracy.

J Chem Theory Comput

Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Simulations based on electronic structure theory naturally include polarization and have no transferability problems. In particular, Kohn-Sham density functional theory (KS-DFT) has become the method of reference for ab initio molecular dynamics simulations of condensed matter systems. However, the high computational cost often poses strict limits on the affordable system size as well as on the extension of sampling (number of configurations). In this work, we propose an improvement to the subsystem density functional theory approach, known as the Kim-Gordon (KG) scheme, thus enabling the sampling of configurations for condensed molecular systems keeping the KS-DFT level accuracy at a fraction of computer time. Our scheme compensates the known KG shortcomings of the electronic kinetic energy term by adding a simple correction and can match KS-DFT accuracy in energies and forces. The computationally cheap correction is determined by means of a machine learning procedure. The proposed KG scheme is applied within a linear scaling self-consistent field formalism and is assessed by a series of molecular dynamics simulations of liquid water under different conditions. Although system-dependent, the correction is transferable between system sizes and temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.1c00592DOI Listing

Publication Analysis

Top Keywords

density functional
12
functional theory
12
subsystem density
8
molecular dynamics
8
dynamics simulations
8
theory
4
theory augmented
4
augmented delta
4
delta learning
4
learning approach
4

Similar Publications

Adenosine A receptors (AARs) have shown promising therapeutic properties despite their controversial role in modulating stroke outcome. However, the temporal evolution of cerebral AARs density after cerebral ischemia and its subsequent neuroinflammatory response have been scarcely explored. In this study, the expression of AARs after transient middle cerebral artery occlusion (MCAO) was evaluated in rats by positron emission tomography (PET) with [C]SCH442416 and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Charge-State-Dependent Structural Transitions and Aromatic Stabilization in Anionic and Neutral RuSi( = 7-11) Clusters.

Inorg Chem

September 2025

Department of Chemistry and Chemical Engineering, Heze University, Heze, Shandong 274015, China.

Transition metal (TM)-doped silicon clusters represent critical model systems for understanding nanoscale hybridization and stability mechanisms. This study provides a comprehensive analysis of structural evolution, electronic properties, and thermodynamic stability in ruthenium-doped silicon clusters (RuSi̅, = 7-11) through integrated experimental and computational approaches. Anion photoelectron spectroscopy combined with density functional theory (DFT/B3LYP), coupled-cluster theory [CCSD(T)], and bonding analyses (AdNDP, NICS, ACID) reveals charge-state-dependent structural transitions, with full Ru encapsulation emerging at = 10 for anions and = 11 for neutrals.

View Article and Find Full Text PDF

It is anticipated that wide-bandgap semiconductors (WBGSs) would be useful materials for energy production and storage. A well-synthesized, yet scarcely explored, diamond-like quaternary semiconductor LiZnGeS has been considered for this work. Herein, we have employed two well-known functionals GGA and mGGA within a framework of density functional theory (DFT).

View Article and Find Full Text PDF

Association between remnant cholesterol and atherosclerosis plaques in single and multiple vascular territories.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Hepatobiliary and Pancreatic Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: In recent years, the role of remnant cholesterol (RC) in the development and progression of cardiovascular diseases has gained increasing attention. However, evidence on the association between RC and subclinical atherosclerosis is limited. This study aims to examine the relationship between RC and atherosclerotic plaques in single and multiple vascular territories.

View Article and Find Full Text PDF

Designing two-photon molecular emitters in nanoparticle-on-mirror cavities.

Nanoscale Horiz

September 2025

Theoretical Chemical Physics Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, Mons B-7000, Belgium.

Two-photon spontaneous emission (TPSE) is a second-order quantum process with promising applications in quantum optics that remains largely unexplored in molecular systems, which are usually very inefficient emitters. In this work, we model the first molecular two-photon emitters and establish the design rules, highlighting their differences from those governing two-photon absorbers. Using both time-dependent density functional theory and Pariser-Parr-Pople calculations, we calculate TPSE in three π-conjugated molecules and identify a dominant pathway.

View Article and Find Full Text PDF